-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex7.cpp
289 lines (259 loc) · 8.82 KB
/
ex7.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
// MFEM Example 7
//
// Compile with: make ex7
//
// Sample runs: ex7 -e 0 -o 2 -r 4
// ex7 -e 1 -o 2 -r 4 -snap
// ex7 -e 0 -amr 1
// ex7 -e 1 -amr 2 -o 2
//
// Description: This example code demonstrates the use of MFEM to define a
// triangulation of a unit sphere and a simple isoparametric
// finite element discretization of the Laplace problem with mass
// term, -Delta u + u = f.
//
// The example highlights mesh generation, the use of mesh
// refinement, high-order meshes and finite elements, as well as
// surface-based linear and bilinear forms corresponding to the
// left-hand side and right-hand side of the discrete linear
// system. Simple local mesh refinement is also demonstrated.
//
// We recommend viewing Example 1 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
// Exact solution and r.h.s., see below for implementation.
double analytic_solution(const Vector &x);
double analytic_rhs(const Vector &x);
void SnapNodes(Mesh &mesh);
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
int elem_type = 1;
int ref_levels = 2;
int amr = 0;
int order = 2;
bool always_snap = false;
bool visualization = 1;
OptionsParser args(argc, argv);
args.AddOption(&elem_type, "-e", "--elem",
"Type of elements to use: 0 - triangles, 1 - quads.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&ref_levels, "-r", "--refine",
"Number of times to refine the mesh uniformly.");
args.AddOption(&amr, "-amr", "--refine-locally",
"Additional local (non-conforming) refinement:"
" 1 = refine around north pole, 2 = refine randomly.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&always_snap, "-snap", "--always-snap", "-no-snap",
"--snap-at-the-end",
"If true, snap nodes to the sphere initially and after each refinement "
"otherwise, snap only after the last refinement");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
// 2. Generate an initial high-order (surface) mesh on the unit sphere. The
// Mesh object represents a 2D mesh in 3 spatial dimensions. We first add
// the elements and the vertices of the mesh, and then make it high-order
// by specifying a finite element space for its nodes.
int Nvert = 8, Nelem = 6;
if (elem_type == 0)
{
Nvert = 6;
Nelem = 8;
}
Mesh *mesh = new Mesh(2, Nvert, Nelem, 0, 3);
if (elem_type == 0) // inscribed octahedron
{
const double tri_v[6][3] =
{
{ 1, 0, 0}, { 0, 1, 0}, {-1, 0, 0},
{ 0, -1, 0}, { 0, 0, 1}, { 0, 0, -1}
};
const int tri_e[8][3] =
{
{0, 1, 4}, {1, 2, 4}, {2, 3, 4}, {3, 0, 4},
{1, 0, 5}, {2, 1, 5}, {3, 2, 5}, {0, 3, 5}
};
for (int j = 0; j < Nvert; j++)
{
mesh->AddVertex(tri_v[j]);
}
for (int j = 0; j < Nelem; j++)
{
int attribute = j + 1;
mesh->AddTriangle(tri_e[j], attribute);
}
mesh->FinalizeTriMesh(1, 1, true);
}
else // inscribed cube
{
const double quad_v[8][3] =
{
{-1, -1, -1}, {+1, -1, -1}, {+1, +1, -1}, {-1, +1, -1},
{-1, -1, +1}, {+1, -1, +1}, {+1, +1, +1}, {-1, +1, +1}
};
const int quad_e[6][4] =
{
{3, 2, 1, 0}, {0, 1, 5, 4}, {1, 2, 6, 5},
{2, 3, 7, 6}, {3, 0, 4, 7}, {4, 5, 6, 7}
};
for (int j = 0; j < Nvert; j++)
{
mesh->AddVertex(quad_v[j]);
}
for (int j = 0; j < Nelem; j++)
{
int attribute = j + 1;
mesh->AddQuad(quad_e[j], attribute);
}
mesh->FinalizeQuadMesh(1, 1, true);
}
// Set the space for the high-order mesh nodes.
H1_FECollection fec(order, mesh->Dimension());
FiniteElementSpace nodal_fes(mesh, &fec, mesh->SpaceDimension());
mesh->SetNodalFESpace(&nodal_fes);
// 3. Refine the mesh while snapping nodes to the sphere.
for (int l = 0; l <= ref_levels; l++)
{
if (l > 0) // for l == 0 just perform snapping
{
mesh->UniformRefinement();
}
// Snap the nodes of the refined mesh back to sphere surface.
if (always_snap || l == ref_levels)
{
SnapNodes(*mesh);
}
}
if (amr == 1)
{
Vertex target(0.0, 0.0, 1.0);
for (int l = 0; l < 5; l++)
{
mesh->RefineAtVertex(target);
}
SnapNodes(*mesh);
}
else if (amr == 2)
{
for (int l = 0; l < 4; l++)
{
mesh->RandomRefinement(0.5); // 50% probability
}
SnapNodes(*mesh);
}
// 4. Define a finite element space on the mesh. Here we use isoparametric
// finite elements -- the same as the mesh nodes.
FiniteElementSpace *fespace = new FiniteElementSpace(mesh, &fec);
cout << "Number of unknowns: " << fespace->GetTrueVSize() << endl;
// 5. Set up the linear form b(.) which corresponds to the right-hand side of
// the FEM linear system, which in this case is (1,phi_i) where phi_i are
// the basis functions in the finite element fespace.
LinearForm *b = new LinearForm(fespace);
ConstantCoefficient one(1.0);
FunctionCoefficient rhs_coef (analytic_rhs);
FunctionCoefficient sol_coef (analytic_solution);
b->AddDomainIntegrator(new DomainLFIntegrator(rhs_coef));
b->Assemble();
// 6. Define the solution vector x as a finite element grid function
// corresponding to fespace. Initialize x with initial guess of zero.
GridFunction x(fespace);
x = 0.0;
// 7. Set up the bilinear form a(.,.) on the finite element space
// corresponding to the Laplacian operator -Delta, by adding the Diffusion
// and Mass domain integrators.
BilinearForm *a = new BilinearForm(fespace);
a->AddDomainIntegrator(new DiffusionIntegrator(one));
a->AddDomainIntegrator(new MassIntegrator(one));
// 8. Assemble the linear system, apply conforming constraints, etc.
a->Assemble();
SparseMatrix A;
Vector B, X;
Array<int> empty_tdof_list;
a->FormLinearSystem(empty_tdof_list, x, *b, A, X, B);
#ifndef MFEM_USE_SUITESPARSE
// 9. Define a simple symmetric Gauss-Seidel preconditioner and use it to
// solve the system AX=B with PCG.
GSSmoother M(A);
PCG(A, M, B, X, 1, 200, 1e-12, 0.0);
#else
// 9. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
UMFPackSolver umf_solver;
umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
umf_solver.SetOperator(A);
umf_solver.Mult(B, X);
#endif
// 10. Recover the solution as a finite element grid function.
a->RecoverFEMSolution(X, *b, x);
// 11. Compute and print the L^2 norm of the error.
cout<<"\nL2 norm of error: " << x.ComputeL2Error(sol_coef) << endl;
// 12. Save the refined mesh and the solution. This output can be viewed
// later using GLVis: "glvis -m sphere_refined.mesh -g sol.gf".
{
ofstream mesh_ofs("sphere_refined.mesh");
mesh_ofs.precision(8);
mesh->Print(mesh_ofs);
ofstream sol_ofs("sol.gf");
sol_ofs.precision(8);
x.Save(sol_ofs);
}
// 13. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << *mesh << x << flush;
}
// 14. Free the used memory.
delete a;
delete b;
delete fespace;
delete mesh;
return 0;
}
double analytic_solution(const Vector &x)
{
double l2 = x(0)*x(0) + x(1)*x(1) + x(2)*x(2);
return x(0)*x(1)/l2;
}
double analytic_rhs(const Vector &x)
{
double l2 = x(0)*x(0) + x(1)*x(1) + x(2)*x(2);
return 7*x(0)*x(1)/l2;
}
void SnapNodes(Mesh &mesh)
{
GridFunction &nodes = *mesh.GetNodes();
Vector node(mesh.SpaceDimension());
for (int i = 0; i < nodes.FESpace()->GetNDofs(); i++)
{
for (int d = 0; d < mesh.SpaceDimension(); d++)
{
node(d) = nodes(nodes.FESpace()->DofToVDof(i, d));
}
node /= node.Norml2();
for (int d = 0; d < mesh.SpaceDimension(); d++)
{
nodes(nodes.FESpace()->DofToVDof(i, d)) = node(d);
}
}
if (mesh.Nonconforming())
{
// Snap hanging nodes to the master side.
Vector tnodes;
nodes.GetTrueDofs(tnodes);
nodes.SetFromTrueDofs(tnodes);
}
}