-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathperf.networking.h
418 lines (328 loc) · 9.58 KB
/
perf.networking.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#include "liburing.h"
#include <openssl/rand.h>
#include <vector>
#include <stdlib.h>
#include <cstdlib>
#pragma once
#define likely(x) __builtin_expect((x),1)
#define unlikely(x) __builtin_expect((x),0)
uint64_t timeNowUs(void)
{
return std::chrono::duration_cast<std::chrono::microseconds>((std::chrono::system_clock::now().time_since_epoch())).count();
}
struct MultiUDPContext;
template <typename T>
class Pool {
private:
uint32_t capacity;
uint32_t watermark;
T *base;
std::vector<T*> available;
public:
Pool(uint32_t count)
{
capacity = count;
watermark = 0;
base = new T[count];
available.reserve(count);
}
uint32_t howManyLeft(void)
{
return (capacity - watermark) + available.size();
}
T* get(void)
{
T *item = NULL;
if (watermark == capacity)
{
if (available.size())
{
item = available.back();
available.pop_back();
}
}
else
{
item = &base[watermark++];
}
return item;
}
void relinquish(T *item)
{
available.emplace_back(item);
}
};
class UDPSocket {
public:
struct sockaddr_in6 *address6;
socklen_t addressLen;
int fd;
template <typename T = struct sockaddr>
T* address(void)
{
return (T *)address6;
}
UDPSocket(uint16_t port)
{
fd = socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP);
setsockopt(fd, SOL_SOCKET, SO_RCVBUF, (const uint32_t[]){ 10'000 * 1500 }, sizeof(uint32_t));
auto val = 1;
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val,
static_cast<socklen_t>(sizeof(val)));
addressLen = sizeof(struct sockaddr_in6);
address6 = (struct sockaddr_in6 *)calloc(1, addressLen);
address6->sin6_family = AF_INET6;
address6->sin6_flowinfo = 0;
address6->sin6_port = htons(port);
address6->sin6_addr = serverAddress;
bind(fd, (struct sockaddr *)address6, addressLen);
}
};
#define MAX_IPV6_UDP_PACKET_SIZE (1500 - 40 - 8)
#define MAX_GRO_SIZE (MAX_IPV6_UDP_PACKET_SIZE * 64)
struct UDPContext {
struct msghdr msg_hdr;
unsigned int msg_len;
UDPContext()
{
memset(&msg_hdr, 0, sizeof(struct msghdr));
msg_hdr.msg_namelen = sizeof(struct sockaddr_in6);
msg_hdr.msg_name = malloc(msg_hdr.msg_namelen);
msg_hdr.msg_iov = (struct iovec *)malloc(sizeof(struct iovec));
msg_hdr.msg_iov[0].iov_len = MAX_GRO_SIZE;
msg_hdr.msg_iov[0].iov_base = malloc(MAX_GRO_SIZE);
msg_hdr.msg_iovlen = 1;
// add the interface to every message
// else if (cmsg->cmsg_level == IPPROTO_IPV6) {
// if (cmsg->cmsg_type == IPV6_PKTINFO) {
// if (addr_dest != NULL) {
// struct in6_pktinfo* pPktInfo6 = (struct in6_pktinfo*)CMSG_DATA(cmsg);
// ((struct sockaddr_in6*)addr_dest)->sin6_family = AF_INET6;
// ((struct sockaddr_in6*)addr_dest)->sin6_port = 0;
// memcpy(&((struct sockaddr_in6*)addr_dest)->sin6_addr, &pPktInfo6->ipi6_addr, sizeof(struct in6_addr));
// if (dest_if != NULL) {
// *dest_if = (int)pPktInfo6->ipi6_ifindex;
// }
// }
// }
}
template <typename T = struct sockaddr>
T* address(void)
{
return (T *)msg_hdr.msg_name;
}
uint8_t* buffer(void)
{
return (uint8_t *)msg_hdr.msg_iov[0].iov_base;
}
void setLength(uint16_t length)
{
msg_hdr.msg_iov[0].iov_len = length;
msg_len = length;
}
void reset(void)
{
msg_len = 0;
setLength(MAX_GRO_SIZE);
}
void copyInIov(struct iovec& opposingVec)
{
msg_len = opposingVec.iov_len;
msg_hdr.msg_iov[0].iov_len = opposingVec.iov_len;
memcpy(buffer(), opposingVec.iov_base, msg_len);
}
void copyInAddress(const struct sockaddr *destination)
{
memcpy(address(), destination, sizeof(struct sockaddr_in6));
}
};
struct MultiUDPContext {
static constexpr uint16_t batchSize = 150;
UDPContext msgs[batchSize];
uint16_t count;
UDPContext* nextPacket(void)
{
return (count < batchSize ? &msgs[count++] : NULL);
}
bool isFull(void)
{
return (count == batchSize);
}
void reset(void)
{
count = 0;
for (auto i = 0; i < batchSize; i++)
{
msgs[i].reset();
}
}
};
struct Timeout {
struct __kernel_timespec timeout = {}; // same as struct timespec;
void setTimeout(uint32_t microseconds)
{
if (microseconds > 0)
{
timeout.tv_sec = microseconds / 1'000'000;
timeout.tv_nsec = (microseconds % 1'000'000) * 1'000;
}
}
float timeoutInSeconds(void)
{
return ((double)timeout.tv_sec + (double)timeout.tv_nsec / (double)1'000'000'000);
}
};
template <Mode mode>
class NetworkHub {
private:
struct io_uring ring;
void setCallbackData(struct io_uring_sqe *sqe, uint8_t op, void *data)
{
sqe->user_data = ((uint64_t)op << 48) | (uint64_t)data;
}
MultiUDPContext recvContext; // for syscall recv-ing
Pool<UDPContext> recvPool; // for iouring recv-ing
Timeout recvTimeout;
public:
uint8_t junk[94 * 1024];
UDPSocket socket;
Pool<MultiUDPContext> sendPool;
NetworkHub(uint16_t port) : socket(port), recvTimeout(), sendPool(50), recvPool(25)
{
if constexpr (mode & Mode::server)
{
RAND_bytes(junk, sizeof(junk));
}
if constexpr (mode & Mode::iouring)
{
struct io_uring_params params = {};
io_uring_queue_init_params(16000, &ring, ¶ms);
io_uring_register_files(&ring, &socket.fd, 1);
}
if constexpr (mode & Mode::server)
{
listen(socket.fd, SOMAXCONN);
}
}
void sendBatch(MultiUDPContext *packets)
{
if constexpr (mode & Mode::syscall)
{
int result = sendmmsg(socket.fd, (struct mmsghdr *)packets->msgs, packets->count, 0);
//if (result < 0) printf("syscall sendBatch -> errno = %d\n", errno);
packets->reset();
sendPool.relinquish(packets);
}
else
{
struct io_uring_sqe *sqe;
//printf("(A) sqe space left = %ld\n", *(ring.sq.kring_entries) - io_uring_sq_ready(&ring));
for (uint16_t i = 0; i < packets->count; i++)
{
struct msghdr& msg = packets->msgs[i].msg_hdr;
sqe = io_uring_get_sqe(&ring);
io_uring_prep_sendmsg(sqe, 0, &msg, 0);
io_uring_sqe_set_flags(sqe, IOSQE_FIXED_FILE);
}
//printf("(B) sqe space left = %ld\n", *(ring.sq.kring_entries) - io_uring_sq_ready(&ring));
setCallbackData(sqe, IORING_OP_SENDMSG, packets);
}
}
template <typename Consumer>
bool recvmsgWithTimeout(int64_t timeoutus, Consumer&& msgConsumer) // timeout in microseconds
{
if constexpr (mode & Mode::syscall)
{
if (timeoutus > 0)
{
struct timeval t = {.tv_sec = timeoutus / 1'000'000, .tv_usec = (timeoutus % 1'000'000)};
fd_set read_fds;
FD_ZERO(&read_fds);
FD_SET(socket.fd, &read_fds);
if (select(socket.fd + 1, &read_fds, NULL, NULL, &t) == 0) return true;
}
int result = recvmmsg(socket.fd, (struct mmsghdr *)recvContext.msgs, 150, MSG_WAITFORONE, NULL);
//if (result < 0) printf("syscall sendBatch -> errno = %d\n", errno);
for (auto i = 0; i < result; i++)
{
UDPContext *packet = &recvContext.msgs[i];
msgConsumer(packet);
packet->reset();
}
}
else
{
// recvPool keep max in play at all times
while (recvPool.howManyLeft() > 0)
{
UDPContext *context = recvPool.get();
context->setLength(MAX_IPV6_UDP_PACKET_SIZE);
struct io_uring_sqe *sqe = io_uring_get_sqe(&ring);
io_uring_prep_recvmsg(sqe, 0, &context->msg_hdr, 0);
io_uring_sqe_set_flags(sqe, IOSQE_FIXED_FILE);
setCallbackData(sqe, IORING_OP_RECVMSG, context);
}
struct io_uring_cqe *cqe;
uint64_t user_data;
void *callbackBuffer;
int op;
int result;
uint32_t head;
uint32_t count;
// printf("unconsumed cqes = %ld\n", io_uring_cq_ready(&ring));
// printf("unsubmitted sqes = %ld\n", io_uring_sq_ready(&ring));
// printf("cqe space left = %ld\n", *(ring.cq.kring_entries) - io_uring_cq_ready(&ring));
//if ((rand() % 250) == 0) printf("sqe space left = %ld\n", *(ring.sq.kring_entries) - io_uring_sq_ready(&ring));
io_uring_submit(&ring);
recvTimeout.setTimeout(timeoutus);
if (io_uring_wait_cqe_timeout(&ring, &cqe, &recvTimeout.timeout) < 0) return true;
io_uring_for_each_cqe(&ring, head, cqe)
{
++count;
user_data = (uint64_t)io_uring_cqe_get_data(cqe);
op = user_data >> 48;
callbackBuffer = (void *)((user_data << 16) >> 16);
result = cqe->res;
switch (op)
{
case IORING_OP_RECVMSG:
{
//if (result < 0) printf("IORING_OP_RECVMSG, result = %d\n", result);
if (result > 0)
{
UDPContext *packet = (UDPContext *)callbackBuffer;
packet->msg_len = result;
msgConsumer(packet);
recvPool.relinquish(packet);
}
break;
}
case IORING_OP_SENDMSG:
{
//if (result < 0) printf("IORING_OP_SENDMMSG, result = %d\n", result);
if (callbackBuffer)
{
MultiUDPContext *packets = (MultiUDPContext *)callbackBuffer;
packets->reset();
sendPool.relinquish(packets);
}
break;
}
default:
if (result < 0)
{
// printf("IORING_OP_SENDMSG, result = %d\n", result);
// printf("unconsumed cqes = %ld\n", io_uring_cq_ready(&ring));
// printf("unsubmitted sqes = %ld\n", io_uring_sq_ready(&ring));
// printf("cqe space left = %ld\n", *(ring.cq.kring_entries) - io_uring_cq_ready(&ring));
// printf("sqe space left = %ld\n", *(ring.sq.kring_entries) - io_uring_sq_ready(&ring));
}
break;
}
}
// uint32_t cqesAvailable = io_uring_cq_ready(&ring);
io_uring_cq_advance(&ring, count);
}
return false;
}
};