-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
305 lines (257 loc) · 10.1 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
"""
This file contains the definition of encoders used in https://arxiv.org/pdf/1705.02364.pdf
"""
import numpy as np
import time
import torch
import torch.nn as nn
class InferSent(nn.Module):
def __init__(self, config):
super(InferSent, self).__init__()
self.bsize = config["bsize"]
self.word_emb_dim = config["word_emb_dim"]
self.enc_lstm_dim = config["enc_lstm_dim"]
self.pool_type = config["pool_type"]
self.dpout_model = config["dpout_model"]
self.version = 1 if "version" not in config else config["version"]
self.enc_lstm = nn.LSTM(
self.word_emb_dim,
self.enc_lstm_dim,
1,
bidirectional=True,
dropout=self.dpout_model,
)
assert self.version in [1, 2]
if self.version == 1:
self.bos = "<s>"
self.eos = "</s>"
self.max_pad = True
self.moses_tok = False
elif self.version == 2:
self.bos = "<p>"
self.eos = "</p>"
self.max_pad = False
self.moses_tok = True
def is_cuda(self):
# either all weights are on cpu or they are on gpu
return self.enc_lstm.bias_hh_l0.data.is_cuda
def forward(self, sent_tuple):
# sent_len: [max_len, ..., min_len] (bsize)
# sent: (seqlen x bsize x worddim)
sent, sent_len = sent_tuple
# Sort by length (keep idx)
sent_len_sorted, idx_sort = np.sort(sent_len)[::-1], np.argsort(-sent_len)
sent_len_sorted = sent_len_sorted.copy()
idx_unsort = np.argsort(idx_sort)
idx_sort = (
torch.from_numpy(idx_sort).cuda()
if self.is_cuda()
else torch.from_numpy(idx_sort)
)
sent = sent.index_select(1, idx_sort)
# Handling padding in Recurrent Networks
sent_packed = nn.utils.rnn.pack_padded_sequence(sent, sent_len_sorted)
sent_output = self.enc_lstm(sent_packed)[0] # seqlen x batch x 2*nhid
sent_output = nn.utils.rnn.pad_packed_sequence(sent_output)[0]
# Un-sort by length
idx_unsort = (
torch.from_numpy(idx_unsort).cuda()
if self.is_cuda()
else torch.from_numpy(idx_unsort)
)
sent_output = sent_output.index_select(1, idx_unsort)
# Pooling
if self.pool_type == "mean":
sent_len = torch.FloatTensor(sent_len.copy()).unsqueeze(1).cuda()
emb = torch.sum(sent_output, 0).squeeze(0)
emb = emb / sent_len.expand_as(emb)
elif self.pool_type == "max":
if not self.max_pad:
sent_output[sent_output == 0] = -1e9
emb = torch.max(sent_output, 0)[0]
if emb.ndimension() == 3:
emb = emb.squeeze(0)
assert emb.ndimension() == 2
return emb
def set_w2v_path(self, w2v_path):
self.w2v_path = w2v_path
def get_word_dict(self, sentences, tokenize=True):
# create vocab of words
word_dict = {}
sentences = [s.split() if not tokenize else self.tokenize(s) for s in sentences]
for sent in sentences:
for word in sent:
if word not in word_dict:
word_dict[word] = ""
word_dict[self.bos] = ""
word_dict[self.eos] = ""
return word_dict
def get_w2v(self, word_dict):
assert hasattr(self, "w2v_path"), "w2v path not set"
# create word_vec with w2v vectors
word_vec = {}
with open(self.w2v_path, encoding="utf-8") as f:
for line in f:
word, vec = line.split(" ", 1)
if word in word_dict:
word_vec[word] = np.fromstring(vec, sep=" ")
print("Found %s(/%s) words with w2v vectors" % (len(word_vec), len(word_dict)))
return word_vec
def get_w2v_k(self, K):
assert hasattr(self, "w2v_path"), "w2v path not set"
# create word_vec with k first w2v vectors
k = 0
word_vec = {}
with open(self.w2v_path, encoding="utf-8") as f:
for line in f:
word, vec = line.split(" ", 1)
if k <= K:
word_vec[word] = np.fromstring(vec, sep=" ")
k += 1
if k > K:
if word in [self.bos, self.eos]:
word_vec[word] = np.fromstring(vec, sep=" ")
if k > K and all([w in word_vec for w in [self.bos, self.eos]]):
break
return word_vec
def build_vocab(self, sentences, tokenize=True):
assert hasattr(self, "w2v_path"), "w2v path not set"
word_dict = self.get_word_dict(sentences, tokenize)
self.word_vec = self.get_w2v(word_dict)
print("Vocab size : %s" % (len(self.word_vec)))
# build w2v vocab with k most frequent words
def build_vocab_k_words(self, K):
assert hasattr(self, "w2v_path"), "w2v path not set"
self.word_vec = self.get_w2v_k(K)
print("Vocab size : %s" % (K))
def update_vocab(self, sentences, tokenize=True):
assert hasattr(self, "w2v_path"), "warning : w2v path not set"
assert hasattr(self, "word_vec"), "build_vocab before updating it"
word_dict = self.get_word_dict(sentences, tokenize)
# keep only new words
for word in self.word_vec:
if word in word_dict:
del word_dict[word]
# udpate vocabulary
if word_dict:
new_word_vec = self.get_w2v(word_dict)
self.word_vec.update(new_word_vec)
else:
new_word_vec = []
print(
"New vocab size : %s (added %s words)"
% (len(self.word_vec), len(new_word_vec))
)
def get_batch(self, batch):
# sent in batch in decreasing order of lengths
# batch: (bsize, max_len, word_dim)
embed = np.zeros((len(batch[0]), len(batch), self.word_emb_dim))
for i in range(len(batch)):
for j in range(len(batch[i])):
embed[j, i, :] = self.word_vec[batch[i][j]]
return torch.FloatTensor(embed)
def tokenize(self, s):
from nltk.tokenize import word_tokenize
if self.moses_tok:
s = " ".join(word_tokenize(s))
s = s.replace(" n't ", "n 't ") # HACK to get ~MOSES tokenization
return s.split()
else:
return word_tokenize(s)
def prepare_samples(self, sentences, bsize, tokenize, verbose):
sentences = [
[self.bos] + s.split() + [self.eos]
if not tokenize
else [self.bos] + self.tokenize(s) + [self.eos]
for s in sentences
]
n_w = np.sum([len(x) for x in sentences])
# filters words without w2v vectors
for i in range(len(sentences)):
s_f = [word for word in sentences[i] if word in self.word_vec]
if not s_f:
import warnings
warnings.warn(
'No words in "%s" (idx=%s) have w2v vectors. \
Replacing by "</s>"..'
% (sentences[i], i)
)
s_f = [self.eos]
sentences[i] = s_f
lengths = np.array([len(s) for s in sentences])
n_wk = np.sum(lengths)
if verbose:
print(
"Nb words kept : %s/%s (%.1f%s)" % (n_wk, n_w, 100.0 * n_wk / n_w, "%")
)
# sort by decreasing length
lengths, idx_sort = np.sort(lengths)[::-1], np.argsort(-lengths)
sentences = np.array(sentences)[idx_sort]
return sentences, lengths, idx_sort
def encode(self, sentences, bsize=64, tokenize=True, verbose=False):
tic = time.time()
sentences, lengths, idx_sort = self.prepare_samples(
sentences, bsize, tokenize, verbose
)
embeddings = []
for stidx in range(0, len(sentences), bsize):
batch = self.get_batch(sentences[stidx : stidx + bsize])
if self.is_cuda():
batch = batch.cuda()
with torch.no_grad():
batch = (
self.forward((batch, lengths[stidx : stidx + bsize]))
.data.cpu()
.numpy()
)
embeddings.append(batch)
embeddings = np.vstack(embeddings)
# unsort
idx_unsort = np.argsort(idx_sort)
embeddings = embeddings[idx_unsort]
if verbose:
print(
"Speed : %.1f sentences/s (%s mode, bsize=%s)"
% (
len(embeddings) / (time.time() - tic),
"gpu" if self.is_cuda() else "cpu",
bsize,
)
)
return embeddings
def visualize(self, sent, tokenize=True):
sent = sent.split() if not tokenize else self.tokenize(sent)
sent = [
[self.bos] + [word for word in sent if word in self.word_vec] + [self.eos]
]
if " ".join(sent[0]) == "%s %s" % (self.bos, self.eos):
import warnings
warnings.warn(
'No words in "%s" have w2v vectors. Replacing \
by "%s %s"..'
% (sent, self.bos, self.eos)
)
batch = self.get_batch(sent)
if self.is_cuda():
batch = batch.cuda()
output = self.enc_lstm(batch)[0]
output, idxs = torch.max(output, 0)
# output, idxs = output.squeeze(), idxs.squeeze()
idxs = idxs.data.cpu().numpy()
argmaxs = [np.sum((idxs == k)) for k in range(len(sent[0]))]
# visualize model
import matplotlib.pyplot as plt
x = range(len(sent[0]))
y = [100.0 * n / np.sum(argmaxs) for n in argmaxs]
plt.xticks(x, sent[0], rotation=45)
plt.bar(x, y)
plt.ylabel("%")
plt.title("Visualisation of words importance")
plt.show()
return output, idxs