forked from Grid2op/grid2viz
-
Notifications
You must be signed in to change notification settings - Fork 1
/
ExpertAssist.py
261 lines (233 loc) · 8.3 KB
/
ExpertAssist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import dash_antd_components as dac
import dash_bootstrap_components as dbc
import dash_core_components as dcc
import dash_html_components as html
import dill
import numpy as np
from alphaDeesp.core.grid2op.Grid2opSimulation import (
Grid2opSimulation,
)
from alphaDeesp.expert_operator import expert_operator
from dash.dependencies import Input, Output, State
from dash.exceptions import PreventUpdate
from dash_table import DataTable
from grid2op.Action import PlayableAction
from grid2op.Episode import EpisodeData, EpisodeReboot
from grid2op.MakeEnv import make
from grid2op.Parameters import Parameters
from grid2op.PlotGrid import PlotPlotly
from contextlib import redirect_stdout
from grid2viz.src.simulation.simulation_assist import BaseAssistant
scenario = "000"
agent = "do-nothing-baseline"
agent_dir = "D:/Projects/RTE-Grid2Viz/grid2viz/grid2viz/data/agents/" + agent
path = r"D:\Projects\RTE-Grid2Viz\grid2viz\grid2viz\data\agents\_cache\000\do-nothing-baseline.dill"
agent_path = (
r"D:/Projects/RTE-Grid2Viz/grid2viz/grid2viz/data/agents/do-nothing-baseline"
)
env_path = r"D:\Projects\RTE-Grid2Viz\Grid2Op\grid2op\data\rte_case14_realistic"
with open(path, "rb") as f:
episode = dill.load(f)
episode_data = EpisodeData.from_disk(agent_dir, scenario)
episode.decorate(episode_data)
network_graph_factory = PlotPlotly(
grid_layout=episode.observation_space.grid_layout,
observation_space=episode.observation_space,
responsive=True,
)
expert_config = {
"totalnumberofsimulatedtopos": 25,
"numberofsimulatedtopospernode": 5,
"maxUnusedLines": 2,
"ratioToReconsiderFlowDirection": 0.75,
"ratioToKeepLoop": 0.25,
"ThersholdMinPowerOfLoop": 0.1,
"ThresholdReportOfLine": 0.2,
}
reward_type = "MinMargin_reward"
p = Parameters()
p.NO_OVERFLOW_DISCONNECTION = False
env = make(
env_path,
test=True,
param=p,
)
env.seed(0)
params_for_runner = env.get_params_for_runner()
params_to_fetch = ["init_grid_path"]
params_for_reboot = {
key: value for key, value in params_for_runner.items() if key in params_to_fetch
}
params_for_reboot["parameters"] = p
episode_reboot = EpisodeReboot.EpisodeReboot()
episode_reboot.load(
env.backend,
data=episode,
agent_path=agent_path,
name=episode.episode_name,
env_kwargs=params_for_reboot,
)
t = 1
obs, reward, *_ = episode_reboot.go_to(t)
def get_ranked_overloads(observation_space, observation):
timestepsOverflowAllowed = (
3 # observation_space.parameters.NB_TIMESTEP_OVERFLOW_ALLOWED
)
sort_rho = -np.sort(
-observation.rho
) # sort in descending order for positive values
sort_indices = np.argsort(-observation.rho)
ltc_list = [sort_indices[i] for i in range(len(sort_rho)) if sort_rho[i] >= 1]
# now reprioritize ltc if critical or not
ltc_critical = [
l
for l in ltc_list
if (observation.timestep_overflow[l] == timestepsOverflowAllowed)
]
ltc_not_critical = [
l
for l in ltc_list
if (observation.timestep_overflow[l] != timestepsOverflowAllowed)
]
ltc_list = ltc_critical + ltc_not_critical
if len(ltc_list) == 0:
ltc_list = [sort_indices[0]]
return ltc_list
class Assist(BaseAssistant):
def __init__(self):
super().__init__()
def layout(self, episode):
return html.Div(
[
dcc.Store(id="assistant_store"),
dcc.Store(id="assistant_actions"),
html.P("Choose a line to cut:", className="my-2"),
dac.Select(
id="select_lines_to_cut",
options=[
{"label": line_name, "value": line_name}
for line_name in episode.line_names
],
mode="default",
value=episode.line_names[0],
),
dbc.Checklist(
options=[
{"label": "Generate snapshots", "value": 1},
],
value=[],
id="generate_snapshot_id",
inline=True,
),
html.P("Chose a chronics scenario:", className="my-2"),
dbc.Input(
type="number", min=0, max=10, step=1, id="input_chronics_scenario"
),
dbc.Button(
id="assist-button", children=["Evaluate with the Expert system"]
),
html.Div(id="expert-results"),
html.P(
id="assist-action-info",
className="more-info-table",
children="Select an action in the table above.",
),
]
)
def register_callbacks(self, app):
@app.callback(
[Output("expert-results", "children"), Output("assistant_actions", "data")],
[Input("assist-button", "n_clicks")],
)
def evaluate_expert_system(n_clicks):
if n_clicks is None:
raise PreventUpdate
with redirect_stdout(None):
simulator = Grid2opSimulation(
obs,
env.action_space,
env.observation_space,
param_options=expert_config,
debug=False,
ltc=[get_ranked_overloads(env.observation_space, obs)[0]],
reward_type=reward_type,
)
ranked_combinations, expert_system_results, actions = expert_operator(
simulator, plot=False, debug=False
)
return (
DataTable(
id="table",
columns=[
{"name": i, "id": i} for i in expert_system_results.columns
],
data=expert_system_results.to_dict("records"),
style_table={"overflowX": "auto"},
row_selectable="single",
style_cell={
"overflow": "hidden",
"textOverflow": "ellipsis",
"maxWidth": 0,
},
tooltip_data=[
{
column: {"value": str(value), "type": "markdown"}
for column, value in row.items()
}
for row in expert_system_results.to_dict("rows")
],
),
[action.as_dict() for action in actions],
)
@app.callback(
[
Output("assistant_store", "data"),
Output("assist-action-info", "children"),
],
[Input("table", "selected_rows")],
[State("assistant_actions", "data")],
)
def select_action(selected_rows, actions):
if selected_rows is None:
raise PreventUpdate
selected_row = selected_rows[0]
action = actions[selected_row]
act = PlayableAction()
act.update(action)
return action, str(act)
def store_to_graph(self, store_data):
p = Parameters()
p.NO_OVERFLOW_DISCONNECTION = False
env = make(
env_path,
test=True,
param=p,
)
env.seed(0)
params_for_runner = env.get_params_for_runner()
params_to_fetch = ["init_grid_path"]
params_for_reboot = {
key: value
for key, value in params_for_runner.items()
if key in params_to_fetch
}
params_for_reboot["parameters"] = p
episode_reboot = EpisodeReboot.EpisodeReboot()
episode_reboot.load(
env.backend,
data=episode,
agent_path=agent_path,
name=episode.episode_name,
env_kwargs=params_for_reboot,
)
obs, reward, *_ = episode_reboot.go_to(t)
act = PlayableAction()
act.update(store_data)
obs, *_ = obs.simulate(action=act, time_step=0)
try:
new_network_graph = network_graph_factory.plot_obs(observation=obs)
except ValueError:
import traceback
new_network_graph = traceback.format_exc()
return new_network_graph