-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
79 lines (63 loc) · 2.42 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import sys
import torch
from transformers import BertForQuestionAnswering
from transformers import BertTokenizer
from transformers import AdamW
from tqdm.auto import tqdm
import matplotlib.pyplot as plt
class NQDataset(torch.utils.data.Dataset):
def __init__(self, encodings):
self.encodings = encodings
def __getitem__(self, idx):
return {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
def __len__(self):
return len(self.encodings.input_ids)
def get_raw(param):
" ".join(param)
return param # dict{text, question, start_position, end_position}
# Main function
if __name__ == "__main__":
# System parameters
k = 1
if len(sys.argv) == 2:
k = int(sys.argv[1])
if k < 1:
print("Error: the number of epochs must be positive")
exit
elif len(sys.argv) > 2:
print("Usage:", sys.argv[0], "number_of_epochs")
exit
# Import pretrained model and tokenizer by HuggingFace from the HuggingFace library
model = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad')
tokenizer = BertTokenizer.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad')
# TO DEFINE
param = ""
raw = get_raw(param)
# - - -
batch_tokens = tokenizer(raw['question'], raw['text'])
batch_tokens.update({'start_position': raw.start_position, 'end_position': raw.end_position})
train_dt = NQDataset(batch_tokens)
loader = torch.utils.data.DataLoader(train_dt, batch_size=16, shuffle=True)
# Tokenization
model.train()
optim = AdamW(model.parameters(), lr=5e-5)
allloss = []
for epoch in range(k):
loop = tqdm(loader)
for batch in loop:
optim.zero_grad()
input_id = batch['input_ids']
attention_mask = batch['attention_mask']
start_position = batch['start_position']
end_position = batch['end_position']
outputs = model(input_id, attention_mask=attention_mask, start_position=start_position, end_position=end_position)
loss = outputs[0]
loss.backward()
optim.step()
allloss.append(loss.item())
loop.set_description(f'Epoch {epoch}')
loop.set_postfix(loss=loss.item())
plt.plot(allloss)
plt.show()
exit
model.save_pretrained('./bert-qa-vacila-agauthier-mlemaire')