-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcircuit_cutter.py
291 lines (231 loc) · 11 KB
/
circuit_cutter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from typing import List, Dict, Tuple, Set
import numpy as np
from qiskit import QuantumCircuit
from qiskit.quantum_info import Operator
import networkx as nx
from dataclasses import dataclass
from collections import defaultdict
@dataclass
class CircuitCut:
"""Represents a cut in the quantum circuit"""
position: int # Gate index where cut occurs
affected_qubits: Set[int] # Qubits affected by the cut
subcircuit_mapping: Dict[int, int] # Maps original qubit indices to subcircuit indices
@dataclass
class SubCircuit:
"""Represents a subcircuit after cutting"""
circuit: QuantumCircuit
input_qubits: Set[int] # Qubits that receive input from previous subcircuit
output_qubits: Set[int] # Qubits that send output to next subcircuit
original_qubits: Dict[int, int] # Maps subcircuit qubit indices to original indices
class QuantumCircuitCutter:
def __init__(self, max_subcircuit_width: int = 5, max_subcircuit_depth: int = 50):
self.max_subcircuit_width = max_subcircuit_width
self.max_subcircuit_depth = max_subcircuit_depth
self.cut_points: List[CircuitCut] = []
self.subcircuits: List[SubCircuit] = []
def cut_circuit(self, circuit: QuantumCircuit) -> List[SubCircuit]:
"""Cut a large quantum circuit into smaller subcircuits"""
# Reset previous cuts and subcircuits
self.cut_points = []
self.subcircuits = []
# Build dependency graph
dep_graph = self._build_dependency_graph(circuit)
# Find optimal cut points
self._find_cut_points(dep_graph, circuit)
# Generate subcircuits
self.subcircuits = self._generate_subcircuits(circuit)
return self.subcircuits
def _build_dependency_graph(self, circuit: QuantumCircuit) -> nx.DiGraph:
"""Build a directed graph representing gate dependencies"""
G = nx.DiGraph()
# Add nodes for each gate
for i, instruction in enumerate(circuit.data):
G.add_node(i,
gate=instruction.operation.name,
qubits=tuple(q.index for q in instruction.qubits))
# Add edges for dependencies
for i in range(len(circuit.data)):
for j in range(i + 1, len(circuit.data)):
if self._gates_dependent(circuit.data[i], circuit.data[j]):
G.add_edge(i, j)
return G
def _gates_dependent(self, gate1, gate2) -> bool:
"""Check if two gates have dependencies"""
qubits1 = set(q.index for q in gate1.qubits)
qubits2 = set(q.index for q in gate2.qubits)
return bool(qubits1.intersection(qubits2))
def _find_cut_points(self, dep_graph: nx.DiGraph, circuit: QuantumCircuit):
"""Find optimal points to cut the circuit"""
# Initialize metrics for each potential cut point
cut_metrics = {}
for node in dep_graph.nodes():
# Skip first and last few gates
if node < 5 or node > len(circuit.data) - 5:
continue
# Calculate metrics for this cut point
subcircuit_sizes = self._evaluate_cut_point(node, dep_graph)
entanglement_cost = self._calculate_entanglement_cost(node, circuit)
# Combine metrics into a single score
cut_metrics[node] = {
'size_balance': subcircuit_sizes,
'entanglement_cost': entanglement_cost
}
# Select optimal cut points
selected_cuts = self._select_optimal_cuts(cut_metrics, circuit)
# Store cut points
self.cut_points = selected_cuts
def _evaluate_cut_point(self, node: int, dep_graph: nx.DiGraph) -> float:
"""Evaluate the quality of a cut point based on resulting subcircuit sizes"""
# Get subgraphs before and after cut
before = set(nx.ancestors(dep_graph, node)).union({node})
after = set(dep_graph.nodes()).difference(before)
# Calculate size difference (aim for balanced sizes)
size_diff = abs(len(before) - len(after))
return size_diff
def _calculate_entanglement_cost(self, node: int, circuit: QuantumCircuit) -> float:
"""Calculate the entanglement cost of cutting at a specific point"""
instruction = circuit.data[node]
affected_qubits = set(q.index for q in instruction.qubits)
# Check neighboring gates for additional entanglement
window = 3 # Look at gates within this window
for i in range(max(0, node - window), min(len(circuit.data), node + window + 1)):
if i != node:
affected_qubits.update(q.index for q in circuit.data[i].qubits)
return len(affected_qubits)
def _select_optimal_cuts(self, cut_metrics: Dict,
circuit: QuantumCircuit) -> List[CircuitCut]:
"""Select the optimal set of cut points"""
cuts = []
circuit_length = len(circuit.data)
min_subcircuit_size = self.max_subcircuit_depth // 2
# Sort points by combined metric
sorted_points = sorted(
cut_metrics.keys(),
key=lambda x: (
cut_metrics[x]['size_balance'] * 0.7 +
cut_metrics[x]['entanglement_cost'] * 0.3
)
)
current_pos = 0
while current_pos < circuit_length:
# Find next valid cut point
valid_cuts = [
p for p in sorted_points
if p > current_pos + min_subcircuit_size and
p < current_pos + self.max_subcircuit_depth
]
if not valid_cuts:
break
cut_point = valid_cuts[0]
affected_qubits = set(
q.index for q in circuit.data[cut_point].qubits
)
# Create subcircuit mapping
mapping = {
q: idx for idx, q in enumerate(sorted(affected_qubits))
}
cuts.append(CircuitCut(
position=cut_point,
affected_qubits=affected_qubits,
subcircuit_mapping=mapping
))
current_pos = cut_point
return cuts
def _generate_subcircuits(self, circuit: QuantumCircuit) -> List[SubCircuit]:
"""Generate subcircuits based on cut points"""
subcircuits = []
cut_positions = [0] + [cut.position for cut in self.cut_points] + [len(circuit.data)]
for i in range(len(cut_positions) - 1):
start = cut_positions[i]
end = cut_positions[i + 1]
# Determine qubits used in this section
used_qubits = set()
for inst in circuit.data[start:end]:
used_qubits.update(q.index for q in inst.qubits)
# Create mapping for qubits
qubit_mapping = {
old: new for new, old in enumerate(sorted(used_qubits))
}
# Create new circuit
subcircuit = QuantumCircuit(len(used_qubits))
# Add gates with remapped qubits
for inst in circuit.data[start:end]:
gate = inst.operation
qubits = [qubit_mapping[q.index] for q in inst.qubits]
if hasattr(gate, 'params'):
subcircuit.append(gate, qubits, inst.clbits)
else:
getattr(subcircuit, gate.name)(*qubits)
# Determine input and output qubits
input_qubits = set()
output_qubits = set()
if i > 0:
input_qubits.update(
qubit_mapping[q] for q in self.cut_points[i-1].affected_qubits
if q in used_qubits
)
if i < len(self.cut_points):
output_qubits.update(
qubit_mapping[q] for q in self.cut_points[i].affected_qubits
if q in used_qubits
)
subcircuits.append(SubCircuit(
circuit=subcircuit,
input_qubits=input_qubits,
output_qubits=output_qubits,
original_qubits={new: old for old, new in qubit_mapping.items()}
))
return subcircuits
def reconstruct_results(self, subcircuit_results: List[Dict]) -> Dict:
"""Reconstruct the results of the full circuit from subcircuit results"""
# Initialize reconstruction
full_results = defaultdict(float)
# Process each subcircuit result
for i, results in enumerate(subcircuit_results):
subcircuit = self.subcircuits[i]
# Map subcircuit results back to original qubit indices
for bitstring, count in results.items():
mapped_bitstring = self._map_bitstring_to_original(
bitstring, subcircuit.original_qubits
)
full_results[mapped_bitstring] += count
# Normalize probabilities
total = sum(full_results.values())
if total > 0:
for k in full_results:
full_results[k] /= total
return dict(full_results)
def _map_bitstring_to_original(self, bitstring: str,
qubit_mapping: Dict[int, int]) -> str:
"""Map a bitstring from subcircuit qubits to original circuit qubits"""
# Convert bitstring to list of bits
bits = list(bitstring)
# Create mapped bitstring
mapped_bits = ['0'] * (max(qubit_mapping.values()) + 1)
for subcircuit_idx, bit in enumerate(bits):
if subcircuit_idx in qubit_mapping:
mapped_bits[qubit_mapping[subcircuit_idx]] = bit
return ''.join(mapped_bits)
def visualize_cuts(self, circuit: QuantumCircuit) -> None:
"""Visualize the circuit cuts using matplotlib"""
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(12, 6))
# Draw circuit gates
for i, inst in enumerate(circuit.data):
qubits = [q.index for q in inst.qubits]
y_positions = qubits
# Draw gate
ax.scatter([i] * len(qubits), y_positions, color='blue', alpha=0.5)
# Draw connections for multi-qubit gates
if len(qubits) > 1:
ax.plot([i] * len(qubits), y_positions, color='blue', alpha=0.3)
# Draw cut lines
for cut in self.cut_points:
ax.axvline(x=cut.position, color='red', linestyle='--', alpha=0.5)
ax.set_xlabel('Gate Index')
ax.set_ylabel('Qubit Index')
ax.set_title('Quantum Circuit Cuts Visualization')
plt.tight_layout()
plt.savefig('circuit_cuts.png')
plt.close()