-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdynamic_compiler.py
392 lines (325 loc) · 14.3 KB
/
dynamic_compiler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
from typing import List, Dict, Tuple, Optional, Callable
import numpy as np
from qiskit import QuantumCircuit, pulse
from qiskit.quantum_info import Operator
import networkx as nx
from dataclasses import dataclass
import matplotlib.pyplot as plt
from collections import defaultdict
@dataclass
class PulseParameters:
"""Parameters for quantum pulse control"""
amplitude: float
duration: int
phase: float
frequency: float
shape: str # 'gaussian', 'square', 'drag', etc.
@dataclass
class CompilationConstraints:
"""Constraints for circuit compilation"""
max_depth: Optional[int] = None
max_two_qubit_gates: Optional[int] = None
preferred_basis_gates: List[str] = None
connectivity_map: Dict[int, List[int]] = None
timing_constraints: Dict[str, float] = None
class DynamicCircuitCompiler:
def __init__(self, optimization_level: int = 2):
self.optimization_level = optimization_level
self.pulse_library = self._initialize_pulse_library()
self.compilation_cache = {}
self.runtime_statistics = []
def compile_circuit(self,
circuit: QuantumCircuit,
constraints: CompilationConstraints) -> QuantumCircuit:
"""Dynamically compile quantum circuit with runtime optimization"""
# Check cache for similar circuits
cache_key = self._generate_cache_key(circuit)
if cache_key in self.compilation_cache:
return self._adapt_cached_circuit(
self.compilation_cache[cache_key], constraints
)
# Perform multi-stage compilation
intermediate = circuit
if self.optimization_level >= 1:
intermediate = self._optimize_gate_sequence(intermediate, constraints)
if self.optimization_level >= 2:
intermediate = self._optimize_pulse_schedules(intermediate)
if self.optimization_level >= 3:
intermediate = self._apply_hardware_specific_optimizations(
intermediate, constraints
)
# Cache the compiled circuit
self.compilation_cache[cache_key] = intermediate
return intermediate
def _initialize_pulse_library(self) -> Dict[str, PulseParameters]:
"""Initialize library of optimal pulse parameters"""
return {
'x90': PulseParameters(
amplitude=0.1,
duration=160,
phase=0.0,
frequency=5.0e9,
shape='gaussian'
),
'cx': PulseParameters(
amplitude=0.2,
duration=320,
phase=0.0,
frequency=5.2e9,
shape='gaussian_square'
)
}
def _generate_cache_key(self, circuit: QuantumCircuit) -> str:
"""Generate a unique key for circuit caching"""
# Create a hash based on circuit structure
circuit_signature = []
for instruction in circuit.data:
gate_info = (
instruction.operation.name,
tuple(q.index for q in instruction.qubits)
)
if hasattr(instruction.operation, 'params'):
gate_info += tuple(instruction.operation.params)
circuit_signature.append(gate_info)
return str(hash(tuple(circuit_signature)))
def _adapt_cached_circuit(self,
cached_circuit: QuantumCircuit,
constraints: CompilationConstraints) -> QuantumCircuit:
"""Adapt a cached circuit to new constraints"""
adapted = cached_circuit.copy()
# Adjust for new constraints
if constraints.max_depth and adapted.depth() > constraints.max_depth:
adapted = self._reduce_circuit_depth(adapted, constraints.max_depth)
if constraints.connectivity_map:
adapted = self._adapt_to_connectivity(
adapted, constraints.connectivity_map
)
return adapted
def _optimize_gate_sequence(self,
circuit: QuantumCircuit,
constraints: CompilationConstraints) -> QuantumCircuit:
"""Optimize the sequence of quantum gates"""
optimized = circuit.copy()
# Build dependency graph
dep_graph = self._build_dependency_graph(optimized)
# Find commuting gates
commuting_sets = self._find_commuting_gates(dep_graph)
# Reorder gates for optimal execution
optimized = self._reorder_gates(optimized, commuting_sets, constraints)
# Merge adjacent gates when possible
optimized = self._merge_adjacent_gates(optimized)
return optimized
def _optimize_pulse_schedules(self, circuit: QuantumCircuit) -> QuantumCircuit:
"""Optimize pulse-level implementation of gates"""
optimized = circuit.copy()
# Convert to pulse schedule
schedule = self._circuit_to_pulse_schedule(optimized)
# Optimize pulse sequences
schedule = self._optimize_pulse_sequence(schedule)
# Convert back to circuit
return self._pulse_schedule_to_circuit(schedule)
def _apply_hardware_specific_optimizations(self,
circuit: QuantumCircuit,
constraints: CompilationConstraints) -> QuantumCircuit:
"""Apply hardware-specific optimizations"""
optimized = circuit.copy()
# Optimize for specific hardware constraints
if constraints.connectivity_map:
optimized = self._optimize_qubit_mapping(
optimized, constraints.connectivity_map
)
if constraints.timing_constraints:
optimized = self._optimize_timing(
optimized, constraints.timing_constraints
)
# Apply basis gate decomposition
if constraints.preferred_basis_gates:
optimized = self._decompose_to_basis(
optimized, constraints.preferred_basis_gates
)
return optimized
def _build_dependency_graph(self, circuit: QuantumCircuit) -> nx.DiGraph:
"""Build a graph representing gate dependencies"""
G = nx.DiGraph()
for i, inst1 in enumerate(circuit.data):
G.add_node(i, instruction=inst1)
# Add edges for dependencies
for j in range(i + 1, len(circuit.data)):
inst2 = circuit.data[j]
if self._gates_dependent(inst1, inst2):
G.add_edge(i, j)
return G
def _gates_dependent(self, gate1, gate2) -> bool:
"""Check if two gates have dependencies"""
qubits1 = set(q.index for q in gate1.qubits)
qubits2 = set(q.index for q in gate2.qubits)
return bool(qubits1.intersection(qubits2))
def _find_commuting_gates(self, dep_graph: nx.DiGraph) -> List[set]:
"""Find sets of commuting gates"""
commuting_sets = []
visited = set()
for node in dep_graph.nodes():
if node not in visited:
# Find all gates that commute with this one
commuting = {node}
for other in dep_graph.nodes():
if other not in visited and not (
dep_graph.has_edge(node, other) or
dep_graph.has_edge(other, node)
):
commuting.add(other)
commuting_sets.append(commuting)
visited.update(commuting)
return commuting_sets
def _reorder_gates(self, circuit: QuantumCircuit,
commuting_sets: List[set],
constraints: CompilationConstraints) -> QuantumCircuit:
"""Reorder gates based on commutation relations"""
reordered = QuantumCircuit(circuit.num_qubits)
used_gates = set()
# Process each commuting set
for gate_set in commuting_sets:
# Filter out already used gates
available = gate_set - used_gates
# Add gates in optimal order
for gate_idx in sorted(available):
instruction = circuit.data[gate_idx]
reordered.append(instruction.operation, instruction.qubits)
used_gates.add(gate_idx)
return reordered
def _merge_adjacent_gates(self, circuit: QuantumCircuit) -> QuantumCircuit:
"""Merge adjacent gates when possible"""
merged = QuantumCircuit(circuit.num_qubits)
i = 0
while i < len(circuit.data):
if i + 1 < len(circuit.data):
# Try to merge with next gate
merged_gate = self._try_merge_gates(
circuit.data[i], circuit.data[i + 1]
)
if merged_gate:
merged.append(merged_gate.operation, merged_gate.qubits)
i += 2
continue
# If no merge possible, add current gate
merged.append(circuit.data[i].operation, circuit.data[i].qubits)
i += 1
return merged
def _try_merge_gates(self, gate1, gate2):
"""Try to merge two adjacent gates"""
# Check if gates can be merged
if (gate1.operation.name == gate2.operation.name and
gate1.qubits == gate2.qubits):
# Merge identical gates
if gate1.operation.name in ['x', 'z']:
return None # They cancel out
elif hasattr(gate1.operation, 'params'):
# Combine parameters
new_params = [
p1 + p2 for p1, p2 in zip(
gate1.operation.params,
gate2.operation.params
)
]
return QuantumCircuit.Instruction(
gate1.operation.__class__(*new_params),
gate1.qubits,
[]
)
return None
def visualize_compilation_results(self,
original: QuantumCircuit,
compiled: QuantumCircuit):
"""Visualize the results of compilation"""
fig, axes = plt.subplots(2, 2, figsize=(15, 10))
# Plot circuit depth comparison
axes[0, 0].bar(['Original', 'Compiled'],
[original.depth(), compiled.depth()])
axes[0, 0].set_title('Circuit Depth')
# Plot gate count comparison
axes[0, 1].bar(['Original', 'Compiled'],
[len(original.data), len(compiled.data)])
axes[0, 1].set_title('Gate Count')
# Plot pulse schedule
schedule = self._circuit_to_pulse_schedule(compiled)
times = [inst.start_time for inst in schedule.instructions]
channels = [inst.channel.index for inst in schedule.instructions]
axes[1, 0].scatter(times, channels)
axes[1, 0].set_title('Pulse Schedule')
# Plot compilation statistics
stats = self.analyze_compilation(original, compiled)
metrics = list(stats.keys())
values = [stats[k] for k in metrics]
axes[1, 1].bar(range(len(metrics)), values)
axes[1, 1].set_xticks(range(len(metrics)))
axes[1, 1].set_xticklabels(metrics, rotation=45)
axes[1, 1].set_title('Compilation Metrics')
plt.tight_layout()
plt.savefig('compilation_results.png')
plt.close()
def analyze_compilation(self,
original: QuantumCircuit,
compiled: QuantumCircuit) -> Dict:
"""Analyze the results of compilation"""
analysis = {
'depth_reduction': (
original.depth() - compiled.depth()
) / original.depth(),
'gate_count_reduction': (
len(original.data) - len(compiled.data)
) / len(original.data),
'execution_time_improvement': self._estimate_execution_time_improvement(
original, compiled
),
'pulse_optimization': self._analyze_pulse_optimization(compiled)
}
# Update runtime statistics
self.runtime_statistics.append(analysis)
return analysis
def _estimate_execution_time_improvement(self,
original: QuantumCircuit,
compiled: QuantumCircuit) -> float:
"""Estimate improvement in execution time"""
original_time = sum(
self.pulse_library.get(
inst.operation.name,
self._default_pulse_parameters(inst)
).duration
for inst in original.data
)
compiled_time = sum(
self.pulse_library.get(
inst.operation.name,
self._default_pulse_parameters(inst)
).duration
for inst in compiled.data
)
return (original_time - compiled_time) / original_time
def _analyze_pulse_optimization(self, circuit: QuantumCircuit) -> Dict:
"""Analyze pulse-level optimizations"""
schedule = self._circuit_to_pulse_schedule(circuit)
return {
'total_duration': schedule.duration,
'pulse_count': len(schedule.instructions),
'average_pulse_duration': np.mean([
inst.pulse.duration for inst in schedule.instructions
])
}
def _default_pulse_parameters(self, instruction) -> PulseParameters:
"""Get default pulse parameters for an instruction"""
if len(instruction.qubits) == 1:
return PulseParameters(
amplitude=0.1,
duration=160,
phase=0.0,
frequency=5.0e9,
shape='gaussian'
)
else:
return PulseParameters(
amplitude=0.2,
duration=320,
phase=0.0,
frequency=5.2e9,
shape='gaussian_square'
)