-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patherror_mitigation.py
380 lines (309 loc) · 14.8 KB
/
error_mitigation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
from typing import List, Dict, Tuple, Optional, Callable
import numpy as np
from qiskit import QuantumCircuit
from qiskit.quantum_info import Operator
import scipy.optimize as optimize
from dataclasses import dataclass
import matplotlib.pyplot as plt
@dataclass
class NoiseModel:
"""Represents a quantum noise model"""
single_qubit_error_rates: Dict[int, float]
two_qubit_error_rates: Dict[Tuple[int, int], float]
measurement_error_rates: Dict[int, float]
coherence_times: Dict[int, Tuple[float, float]] # T1, T2 times
@dataclass
class MitigationResult:
"""Results from error mitigation"""
mitigated_counts: Dict[str, float]
confidence_intervals: Dict[str, Tuple[float, float]]
extrapolated_value: float
mitigation_method: str
fidelity_improvement: float
class QuantumErrorMitigator:
def __init__(self, noise_model: NoiseModel):
self.noise_model = noise_model
self.measurement_calibration = None
self.zne_scale_factors = [1.0, 1.5, 2.0, 2.5, 3.0]
def zero_noise_extrapolation(self,
circuit: QuantumCircuit,
results: Dict[str, float]) -> MitigationResult:
"""Perform zero-noise extrapolation"""
# Generate scaled noise versions of the circuit
scaled_circuits = self._generate_scaled_circuits(circuit)
# Execute circuits and collect results
scaled_results = []
for scale in self.zne_scale_factors:
scaled_circuit = self._apply_noise_scaling(circuit, scale)
result = self._execute_circuit(scaled_circuit)
scaled_results.append(result)
# Perform Richardson extrapolation
extrapolated_results = self._richardson_extrapolation(
self.zne_scale_factors, scaled_results
)
# Calculate confidence intervals
confidence = self._calculate_confidence_intervals(scaled_results)
# Calculate fidelity improvement
fidelity = self._estimate_fidelity_improvement(results, extrapolated_results)
return MitigationResult(
mitigated_counts=extrapolated_results,
confidence_intervals=confidence,
extrapolated_value=0.0, # Set based on specific metric
mitigation_method='zero_noise_extrapolation',
fidelity_improvement=fidelity
)
def probabilistic_error_cancellation(self,
circuit: QuantumCircuit) -> MitigationResult:
"""Perform probabilistic error cancellation"""
# Generate quasi-probability representation
quasi_probs = self._generate_quasi_probabilities(circuit)
# Sample from quasi-probability distribution
sampled_circuits = self._sample_circuits(circuit, quasi_probs)
# Execute sampled circuits
results = []
for sampled_circuit in sampled_circuits:
result = self._execute_circuit(sampled_circuit)
results.append(result)
# Combine results with quasi-probability weights
mitigated_results = self._combine_quasi_prob_results(results, quasi_probs)
# Calculate confidence intervals
confidence = self._calculate_confidence_intervals(results)
# Calculate fidelity improvement
fidelity = self._estimate_fidelity_improvement(
self._execute_circuit(circuit), mitigated_results
)
return MitigationResult(
mitigated_counts=mitigated_results,
confidence_intervals=confidence,
extrapolated_value=0.0,
mitigation_method='probabilistic_error_cancellation',
fidelity_improvement=fidelity
)
def measurement_error_mitigation(self,
results: Dict[str, float]) -> MitigationResult:
"""Perform measurement error mitigation"""
if self.measurement_calibration is None:
self._perform_measurement_calibration()
# Apply calibration matrix
mitigated_results = self._apply_calibration_matrix(results)
# Calculate confidence intervals
confidence = self._calculate_confidence_intervals([results, mitigated_results])
# Calculate fidelity improvement
fidelity = self._estimate_fidelity_improvement(results, mitigated_results)
return MitigationResult(
mitigated_counts=mitigated_results,
confidence_intervals=confidence,
extrapolated_value=0.0,
mitigation_method='measurement_error_mitigation',
fidelity_improvement=fidelity
)
def _generate_scaled_circuits(self,
circuit: QuantumCircuit) -> List[QuantumCircuit]:
"""Generate circuits with scaled noise levels"""
scaled_circuits = []
for scale in self.zne_scale_factors:
# Create scaled version of the circuit
scaled = QuantumCircuit(circuit.num_qubits)
for instruction in circuit.data:
# Add noise scaling through gate decomposition
if len(instruction.qubits) == 1:
# Scale single-qubit gates
self._scale_single_qubit_gate(
scaled, instruction, scale
)
else:
# Scale two-qubit gates
self._scale_two_qubit_gate(
scaled, instruction, scale
)
scaled_circuits.append(scaled)
return scaled_circuits
def _scale_single_qubit_gate(self, circuit: QuantumCircuit,
instruction, scale: float):
"""Scale noise in single-qubit gates"""
# Implement gate stretching
if instruction.operation.name in ['rx', 'ry', 'rz']:
angle = instruction.operation.params[0]
stretched_angle = angle * scale
getattr(circuit, instruction.operation.name)(
stretched_angle, instruction.qubits[0]
)
else:
# For non-rotation gates, use identity decomposition
circuit.append(instruction.operation, instruction.qubits)
def _scale_two_qubit_gate(self, circuit: QuantumCircuit,
instruction, scale: float):
"""Scale noise in two-qubit gates"""
if instruction.operation.name == 'cx':
# Decompose CNOT into rotations and scale
q1, q2 = instruction.qubits
circuit.h(q2)
circuit.cx(q1, q2)
circuit.h(q2)
else:
# Direct scaling for other two-qubit gates
circuit.append(instruction.operation, instruction.qubits)
def _richardson_extrapolation(self,
scale_factors: List[float],
results: List[Dict[str, float]]) -> Dict[str, float]:
"""Perform Richardson extrapolation to zero noise"""
# Combine results for each basis state
extrapolated_results = {}
# Get all possible basis states
basis_states = set()
for result in results:
basis_states.update(result.keys())
for state in basis_states:
# Get probabilities for this state at different noise scales
probs = [result.get(state, 0.0) for result in results]
# Perform polynomial fit
coeffs = np.polyfit(scale_factors, probs, len(scale_factors) - 1)
# Extrapolate to zero noise
extrapolated_results[state] = np.polyval(coeffs, 0.0)
return extrapolated_results
def _generate_quasi_probabilities(self,
circuit: QuantumCircuit) -> Dict[str, float]:
"""Generate quasi-probability representation of the circuit"""
quasi_probs = {}
# Analyze circuit gates
for instruction in circuit.data:
# Generate quasi-probabilities for each gate
if len(instruction.qubits) == 1:
quasi_probs.update(
self._single_qubit_quasi_probs(instruction)
)
else:
quasi_probs.update(
self._two_qubit_quasi_probs(instruction)
)
return quasi_probs
def _single_qubit_quasi_probs(self, instruction) -> Dict[str, float]:
"""Generate quasi-probabilities for single-qubit gates"""
qubit = instruction.qubits[0].index
error_rate = self.noise_model.single_qubit_error_rates.get(qubit, 0.01)
# Basic quasi-probability decomposition
return {
f"ideal_{instruction.operation.name}_{qubit}": 1.0 + error_rate,
f"error_{instruction.operation.name}_{qubit}": -error_rate
}
def _two_qubit_quasi_probs(self, instruction) -> Dict[str, float]:
"""Generate quasi-probabilities for two-qubit gates"""
q1, q2 = [q.index for q in instruction.qubits]
error_rate = self.noise_model.two_qubit_error_rates.get((q1, q2), 0.05)
return {
f"ideal_{instruction.operation.name}_{q1}_{q2}": 1.0 + error_rate,
f"error_{instruction.operation.name}_{q1}_{q2}": -error_rate
}
def _perform_measurement_calibration(self):
"""Perform measurement calibration"""
num_qubits = len(self.noise_model.measurement_error_rates)
calibration_matrix = np.zeros((2**num_qubits, 2**num_qubits))
# Prepare and measure all basis states
for i in range(2**num_qubits):
# Create calibration circuit for basis state |i⟩
circuit = QuantumCircuit(num_qubits)
binary = format(i, f'0{num_qubits}b')
# Prepare basis state
for j, bit in enumerate(binary):
if bit == '1':
circuit.x(j)
# Add measurements
circuit.measure_all()
# Execute and store results
results = self._execute_circuit(circuit)
for j, count in results.items():
calibration_matrix[i][int(j, 2)] = count
# Normalize calibration matrix
self.measurement_calibration = calibration_matrix / np.sum(
calibration_matrix, axis=1, keepdims=True
)
def _apply_calibration_matrix(self,
results: Dict[str, float]) -> Dict[str, float]:
"""Apply measurement calibration matrix to results"""
if self.measurement_calibration is None:
return results
# Convert results to vector form
num_qubits = len(self.noise_model.measurement_error_rates)
result_vector = np.zeros(2**num_qubits)
for bitstring, count in results.items():
result_vector[int(bitstring, 2)] = count
# Apply inverse calibration matrix
mitigated_vector = np.linalg.solve(
self.measurement_calibration, result_vector
)
# Convert back to dictionary form
mitigated_results = {}
for i, value in enumerate(mitigated_vector):
if value > 0: # Filter out negative values
bitstring = format(i, f'0{num_qubits}b')
mitigated_results[bitstring] = value
return mitigated_results
def _calculate_confidence_intervals(self,
results: List[Dict[str, float]],
confidence_level: float = 0.95) -> Dict[str, Tuple[float, float]]:
"""Calculate confidence intervals for results"""
confidence_intervals = {}
# Get all possible states
states = set()
for result in results:
states.update(result.keys())
for state in states:
# Get values for this state
values = [result.get(state, 0.0) for result in results]
# Calculate mean and standard error
mean = np.mean(values)
std_error = np.std(values) / np.sqrt(len(values))
# Calculate confidence interval
z_score = 1.96 # 95% confidence level
margin = z_score * std_error
confidence_intervals[state] = (mean - margin, mean + margin)
return confidence_intervals
def _estimate_fidelity_improvement(self,
original_results: Dict[str, float],
mitigated_results: Dict[str, float]) -> float:
"""Estimate the improvement in fidelity after mitigation"""
# Calculate state overlap
overlap = 0.0
states = set(original_results.keys()).union(mitigated_results.keys())
for state in states:
orig_prob = original_results.get(state, 0.0)
mitig_prob = mitigated_results.get(state, 0.0)
overlap += np.sqrt(orig_prob * mitig_prob)
return overlap
def visualize_mitigation_results(self,
original_results: Dict[str, float],
mitigated_results: MitigationResult):
"""Visualize the effects of error mitigation"""
plt.figure(figsize=(15, 5))
# Plot original results
plt.subplot(131)
self._plot_results(original_results, "Original Results")
# Plot mitigated results
plt.subplot(132)
self._plot_results(
mitigated_results.mitigated_counts,
f"Mitigated Results\n({mitigated_results.mitigation_method})"
)
# Plot improvement metrics
plt.subplot(133)
self._plot_improvement_metrics(mitigated_results)
plt.tight_layout()
plt.savefig('error_mitigation_results.png')
plt.close()
def _plot_results(self, results: Dict[str, float], title: str):
"""Helper function to plot measurement results"""
plt.bar(range(len(results)), list(results.values()))
plt.xticks(range(len(results)), list(results.keys()), rotation=45)
plt.title(title)
plt.ylabel('Probability')
def _plot_improvement_metrics(self, results: MitigationResult):
"""Plot improvement metrics"""
metrics = {
'Fidelity\nImprovement': results.fidelity_improvement,
'Confidence\nLevel': 0.95,
'Error\nReduction': 1.0 - (1.0 / results.fidelity_improvement)
}
plt.bar(range(len(metrics)), list(metrics.values()))
plt.xticks(range(len(metrics)), list(metrics.keys()))
plt.title('Improvement Metrics')
plt.ylabel('Value')