-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdatasets.py
167 lines (147 loc) · 6.73 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import json
from torchvision import datasets, transforms
from timm.data.constants import \
IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.data import create_transform
import numpy as np
def build_dataset(split, args, percent = None, num_samples = None):
is_train = split == 'train'
if args.data_set.split('.')[0] == "geobench":
transform = build_transform_geobench(is_train, args)
else:
transform = build_transform(is_train, args)
print("Transform = ")
if isinstance(transform, tuple):
for trans in transform:
print(" - - - - - - - - - - ")
for t in trans.transforms:
print(t)
else:
for t in transform.transforms:
print(t)
print("---------------------------")
if args.data_set == 'CIFAR':
dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform, download=True)
nb_classes = 100
elif args.data_set == 'IMNET':
print("reading from datapath", args.data_path)
root = os.path.join(args.data_path, 'train' if is_train else 'val')
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = 1000
elif args.data_set == "image_folder":
root = args.data_path if is_train else args.eval_data_path
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = args.nb_classes
assert len(dataset.class_to_idx) == nb_classes
elif args.data_set.split('.')[0] == "geobench":
from geobenchdataset import GeobenchDataset
# split = "train" if is_train else "val"
dataset_name = args.data_set.split('.')[1]
if dataset_name in ["m-eurosat", "m-so2sat", "m-bigearthnet", "m-brick-kiln"]:
dataset = GeobenchDataset(dataset_name=dataset_name, split=split, transform=None, benchmark_name="classification")
elif dataset_name in ["m-cashew-plantation", "m-SA-crop-type"]:
dataset = GeobenchDataset(dataset_name=dataset_name, split=split, transform=None, benchmark_name="segmentation")
else:
raise NotImplementedError()
nb_classes = dataset.num_classes
else:
raise NotImplementedError()
if percent is None and num_samples is None:
# set num_samples to a large number to avoid subsampling
num_samples = 1000000000
if (percent is not None and is_train) or (num_samples is not None and is_train):
from geobenchdataset import geobench_dataset_subset
if percent is not None:
print("Subsampling the dataset to have only %d%% of the original samples" % (percent * 100))
else:
print("Subsampling the dataset to have only %d samples" % num_samples)
# if args.data_set == 'geobench.m-bigearthnet':
labels = []
label_stats = dataset.label_stats
label_map = dataset.label_map
partition_stats = json.load(open(os.path.join(dataset.dataset_dir, "default_partition.json"), "r"))
train_idx = partition_stats["train"]
for i in train_idx:
if label_stats is not None:
label = np.where(np.array(label_stats[i]) == 1)[0]
else:
for k, v in label_map.items():
if i in v:
label = int(k)
break
labels.append(label)
print(len(labels))
print('created labels')
from subsample import stratified_subsample_multilabel
if percent is not None:
if args.data_set == 'geobench.m-bigearthnet':
y = stratified_subsample_multilabel(labels, percentage=percent, multilabel=True, classes=[i for i in range(args.nb_classes)])
else:
y = stratified_subsample_multilabel(labels, percentage=percent, multilabel=False)
else:
if args.data_set == 'geobench.m-bigearthnet':
if num_samples > len(labels):
num_samples = len(labels)
y = stratified_subsample_multilabel(labels, num_samples=num_samples, multilabel=True, classes=[i for i in range(args.nb_classes)])
else:
if num_samples > len(labels):
num_samples = len(labels)
y = stratified_subsample_multilabel(labels, num_samples=num_samples, multilabel=False)
print('number of sub samples = ', len(y))
if num_samples < len(labels):
dataset = geobench_dataset_subset(dataset, y)
print("Number of the class = %d" % nb_classes)
return dataset, nb_classes
def build_transform_geobench(is_train, args):
t = []
t.append(transforms.ToTensor())
return transforms.Compose(t)
def build_transform(is_train, args):
resize_im = args.input_size > 32
imagenet_default_mean_and_std = args.imagenet_default_mean_and_std
mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN
std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD
if is_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
mean=mean,
std=std,
)
if not resize_im:
transform.transforms[0] = transforms.RandomCrop(
args.input_size, padding=4)
return transform
t = []
if resize_im:
# warping (no cropping) when evaluated at 384 or larger
if args.input_size >= 384:
t.append(
transforms.Resize((args.input_size, args.input_size),
interpolation=transforms.InterpolationMode.BICUBIC),
)
print(f"Warping {args.input_size} size input images...")
else:
if args.crop_pct is None:
args.crop_pct = 224 / 256
size = int(args.input_size / args.crop_pct)
t.append(
# to maintain same ratio w.r.t. 224 images
transforms.Resize(size, interpolation=transforms.InterpolationMode.BICUBIC),
)
t.append(transforms.CenterCrop(args.input_size))
t.append(transforms.ToTensor())
t.append(transforms.Normalize(mean, std))
return transforms.Compose(t)