In this experiment, we train Transformer BASE model on scb-mt-en-th-2020+mt-opus
version 1.0 and mt-opus
version 1.0. The total number of English-Thai segment pairs after text cleaning and filtering is 4,319,905.
Similary to the Experimetn 1,2, the Transformer BASE model used in this experiment consists of 6 encoder and 6 decoder blocks, 512 embedding dimensions, and 2,048 feed forward hidden units. The dropout rate is set to 0.3. The embedding of decoder input and output are shared. Maximum number of tokens per mini-batch is 9,750. The optimizer is Adam with initial learning rate of 1e-7 and weight decay rate of 0.0. The learning rate has an inverse squared schedule with warmup for the first 4,000 updates. Label smoothing of 0.1 is applied during training. The criteria for selecting the best model checkpoint is label-smoothed cross entropy loss.
We train each model on 1 NVIDIA Tesla V100 GPU (as a part of DGX-1) with mixed-precision training (fp16) and gradient accumulation for 16 steps.
-
Package Installlation
1.1 Install required Python packages via
pip install
pip install -r requirements.txt
1.2 Install Fairseq Toolkit from source
bash scripts/install_fairseq.sh y
Note: When the first argument is specified as
y
, it will install apex, an extension for mixed-precision training in Pytorch, designed for host machine with GPUs. If specify this argument asn
, it will only installfairseq.
The default value isn
.In our experiment, we install
apex
librery. -
Download Dataset
Download
scb-mt-en-th-2020+mt-opus + mt-opus
dataset - from the following script.bash scripts/download_dataset.scb_mt-mt_opus.sh 1.0
Note: The first argument indicates the version of
scb-mt-en-th-2020+mt-opus + mt-opus
dataset. (default value is1.0
)
-
Perform text cleaning and filtering
python ./scripts/clean_text.py ./dataset/raw/scb-mt-en-th-2020+mt-opus \ --unicode_norm NFKC \ --out_dir ./dataset/cleaned/scb-mt-en-th-2020+mt-opus
-
Merge csv files into txt file.
python ./scripts/merge_csv_files.py ./dataset/cleaned/scb-mt-en-th-2020+mt-opus/ \ --out_dir ./dataset/merged/scb-mt-en-th-2020+mt-opus/
-
Split the dataset into train/val/test set with the ratio 90/10
python ./scripts/split_dataset.py ./dataset/merged/scb-mt-en-th-2020+mt-opus/en-th.merged.csv \ 0.8 \ 0.1 \ --stratify \ --seed 2020 \ --out_dir ./dataset/split/scb-mt-en-th-2020+mt-opus
As this script splits train/val/test set differently each time, we provide our version of train/val/test split in order to reproduce our experiment. This can be download via the following script.
bash scripts/download_dataset_split.scm-1m+mt-opus.sh
-
Perform text preprocessing for th→en
newmm→moses
python ./scripts/preprocess_tokenize.py \ --out_dir ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/th-en/newmm-moses/ \ --spm_out_dir ./dataset/spm/scb-mt-en-th-2020+mt-opus/th-en \ --split_dataset_dir ./dataset/split/scb-mt-en-th-2020+mt-opus \ --src_lang th \ --tgt_lang en \ --src_tokenizer newmm \ --tgt_tokenizer moses
newmm→spm
python ./scripts/preprocess_tokenize.py \ --out_dir ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/th-en/newmm-spm/ \ --spm_out_dir ./dataset/spm/scb-mt-en-th-2020+mt-opus/th-en \ --split_dataset_dir ./dataset/split/scb-mt-en-th-2020+mt-opus \ --src_lang th \ --tgt_lang en \ --tgt_spm_vocab_size 16000 \ --src_tokenizer newmm \ --tgt_tokenizer spm
spm→moses
python ./scripts/preprocess_tokenize.py \ --out_dir ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/th-en/spm-moses/ \ --spm_out_dir ./dataset/spm/scb-mt-en-th-2020+mt-opus/th-en \ --split_dataset_dir ./dataset/split/scb-mt-en-th-2020+mt-opus \ --src_lang th \ --tgt_lang en \ --src_spm_vocab_size 16000 \ --src_tokenizer spm \ --tgt_tokenizer moses
spm→spm
python ./scripts/preprocess_tokenize.py \ --out_dir ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/th-en/spm-spm/ \ --spm_out_dir ./dataset/spm/scb-mt-en-th-2020+mt-opus/th-en \ --split_dataset_dir ./dataset/split/scb-mt-en-th-2020+mt-opus \ --src_lang th \ --tgt_lang en \ --src_spm_vocab_size 16000 \ --tgt_spm_vocab_size 16000 \ --src_tokenizer spm \ --tgt_tokenizer spm
-
Perform text preprocessing for en→th
moses→newmm
python ./scripts/preprocess_tokenize.py \ --out_dir ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/en-th/moses-newmm_space/ \ --spm_out_dir ./dataset/spm/scb-mt-en-th-2020+mt-opus/en-th \ --split_dataset_dir ./dataset/split/scb-mt-en-th-2020+mt-opus \ --src_lang en \ --tgt_lang th \ --src_tokenizer moses \ --tgt_tokenizer newmm_space
moses→spm
python ./scripts/preprocess_tokenize.py \ --out_dir ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/en-th/moses-spm/ \ --spm_out_dir ./dataset/spm/scb-mt-en-th-2020+mt-opus/en-th \ --split_dataset_dir ./dataset/split/scb-mt-en-th-2020+mt-opus \ --src_lang en \ --tgt_lang th \ --tgt_spm_vocab_size 16000 \ --src_tokenizer moses \ --tgt_tokenizer spm
spm→newmm
python ./scripts/preprocess_tokenize.py \ --out_dir ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/en-th/spm-newmm_space/ \ --spm_out_dir ./dataset/spm/scb-mt-en-th-2020+mt-opus/en-th \ --split_dataset_dir ./dataset/split/scb-mt-en-th-2020+mt-opus \ --src_lang en \ --tgt_lang th \ --src_spm_vocab_size 16000 \ --src_tokenizer spm \ --tgt_tokenizer newmm_space
spm→spm
python ./scripts/preprocess_tokenize.py \ --out_dir ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/en-th/spm-spm/ \ --spm_out_dir ./dataset/spm/scb-mt-en-th-2020+mt-opus/en-th \ --split_dataset_dir ./dataset/split/scb-mt-en-th-2020+mt-opus \ --src_lang en \ --tgt_lang th \ --src_spm_vocab_size 16000 \ --tgt_spm_vocab_size 16000 \ --src_tokenizer spm \ --tgt_tokenizer spm
-
Binarize tokenized segments in train/val/test with
fairseq-preprocess
via the following script.bash ./scripts/fairseq_preprocess.train_test.sh th en 130000 130000 ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/th-en/newmm-moses ./dataset/binarized/scb-mt-en-th-2020+mt-opus/th-en/newmm-moses/130000-130000/ bash ./scripts/fairseq_preprocess.train_test.sh th en 130000 16000 ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/th-en/newmm-spm ./dataset/binarized/scb-mt-en-th-2020+mt-opus/th-en/newmm-spm/130000-16000/ bash ./scripts/fairseq_preprocess.train_test.sh th en 16000 130000 ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/th-en/spm-moses ./dataset/binarized/scb-mt-en-th-2020+mt-opus/th-en/spm-moses/16000-130000/ bash ./scripts/fairseq_preprocess.train_test.sh th en 32000 32000 ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/th-en/spm-spm ./dataset/binarized/scb-mt-en-th-2020+mt-opus/th-en/spm-spm/32000-joined/ --joined-dictionary bash ./scripts/fairseq_preprocess.train_test.sh en th 130000 130000 ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/en-th/moses-newmm_space ./dataset/binarized/scb-mt-en-th-2020+mt-opus/en-th/moses-newmm_space/130000-130000/ bash ./scripts/fairseq_preprocess.train_test.sh en th 130000 16000 ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/en-th/moses-spm ./dataset/binarized/scb-mt-en-th-2020+mt-opus/en-th/moses-spm/130000-16000/ bash ./scripts/fairseq_preprocess.train_test.sh en th 16000 130000 ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/en-th/spm-newmm_space ./dataset/binarized/scb-mt-en-th-2020+mt-opus/en-th/spm-newmm_space/16000-130000/ bash ./scripts/fairseq_preprocess.train_test.sh en th 32000 32000 ./dataset/tokenized/scb-mt-en-th-2020+mt-opus/en-th/spm-spm ./dataset/binarized/scb-mt-en-th-2020+mt-opus/en-th/spm-spm/32000-joined/ --joined-dictionary
Train Transformer BASE model via the following script: scripts/fairseq_train.transformer_base.single_gpu.fp16.sh
Note: The first argument indicate the ID of GPU. In this case, we train each model on 1 GPU (GPU_ID
: 0-7).
-
Train models for th→en direction
1.1 moses→newmm
bash ./scripts/fairseq_train.transformer_base.single_gpu.fp16 0 ./dataset/binarized/scb-mt-en-th-2020+mt-opus/th-en/newmm-moses/130000-130000/ scb-mt-en-th-2020+mt-opus/th-en/newmm-moses/130000-130000 9750
1.2 moses→spm
bash ./scripts/fairseq_train.transformer_base.single_gpu.fp16 1 ./dataset/binarized/scb-mt-en-th-2020+mt-opus/th-en/newmm-spm/130000-16000/ scb-mt-en-th-2020+mt-opus/th-en/newmm-spm/130000-16000 9750
1.3 spm→newmm
bash ./scripts/fairseq_train.transformer_base.single_gpu.fp16 2 ./dataset/binarized/scb-mt-en-th-2020+mt-opus/th-en/spm-moses/16000-130000/ scb-mt-en-th-2020+mt-opus/th-en/spm-moses/16000-130000 9750
1.4 spm→spm
bash ./scripts/fairseq_train.transformer_base.single_gpu.fp16 3 ./dataset/binarized/scb-mt-en-th-2020+mt-opus/th-en/spm-spm/32000-joined/ scb-mt-en-th-2020+mt-opus/th-en/spm-spm/32000-joined 9750
-
Train models for en→th direction
2.1 newmm→moses
bash ./scripts/fairseq_train.transformer_base.single_gpu.fp16 4 ./dataset/binarized/scb-mt-en-th-2020+mt-opus/en-th/moses-newmm_space/130000-130000/ scb-mt-en-th-2020+mt-opus/en-th/moses-newmm_space/130000-130000 9750
2.2 newmm→spm
bash ./scripts/fairseq_train.transformer_base.single_gpu.fp16 5 ./dataset/binarized/scb-mt-en-th-2020+mt-opus/en-th/moses-spm/130000-16000/ scb-mt-en-th-2020+mt-opus/en-th/moses-spm/130000-16000 9750
2.3 spm→moses
bash ./scripts/fairseq_train.transformer_base.single_gpu.fp16 6 ./dataset/binarized/scb-mt-en-th-2020+mt-opus/en-th/spm-newmm_space/16000-130000/ scb-mt-en-th-2020+mt-opus/en-th/spm-newmm_space/16000-130000 9750
2.4 spm→spm
bash ./scripts/fairseq_train.transformer_base.single_gpu.fp16 7 ./dataset/binarized/scb-mt-en-th-2020+mt-opus/en-th/spm-spm/32000-joined/ scb-mt-en-th-2020+mt-opus/en-th/spm-spm/32000-joined 9750
In this experiment, we only evaluate on Thai-Englush IWSLT 2015 test sets (tst2010-2013).
The total number of segment pairs is 4,242.
1.1.1 newmm→moses
CUDA_VISIBLE_DEVICES=0 bash ./scripts/evaluate_model.iwslt2015.sh \
./checkpoints/scb-mt-en-th-2020+mt-opus/th-en/newmm-moses/130000-130000/checkpoint_best.pt \
./dataset/binarized/scb-mt-en-th-2020+mt-opus/th-en/newmm-moses/130000-130000 \
th \
en \
word \
word \
./iwslt_2015/test/tst2010-2013_th-en.th \
./iwslt_2015/test/tst2010-2013_th-en.en \
./translation_results/scb-mt-en-th-2020+mt-opus@eval_on@iwslt2015/th-en/newmm-moses/130000-130000/checkpoint_best \
64 \
4
1.1.2 newmm→spm
CUDA_VISIBLE_DEVICES=0 bash ./scripts/evaluate_model.iwslt2015.sh \
./checkpoints/scb-mt-en-th-2020+mt-opus/th-en/newmm-spm/130000-16000/checkpoint_best.pt \
./dataset/binarized/scb-mt-en-th-2020+mt-opus/th-en/newmm-spm/130000-16000 \
th \
en \
word \
sentencepiece \
./iwslt_2015/test/tst2010-2013_th-en.th \
./iwslt_2015/test/tst2010-2013_th-en.en \
./translation_results/scb-mt-en-th-2020+mt-opus@eval_on@iwslt2015/th-en/newmm-spm/130000-16000/checkpoint_best \
64 \
4
1.1.3 spm→moses
CUDA_VISIBLE_DEVICES=0 bash ./scripts/evaluate_model.iwslt2015.sh \
./checkpoints/scb-mt-en-th-2020+mt-opus/th-en/spm-moses/16000-130000/checkpoint_best.pt \
./dataset/binarized/scb-mt-en-th-2020+mt-opus/th-en/spm-moses/16000-130000 \
th \
en \
sentencepiece \
word \
./iwslt_2015/test/tst2010-2013_th-en.th \
./iwslt_2015/test/tst2010-2013_th-en.en \
./translation_results/scb-mt-en-th-2020+mt-opus@eval_on@iwslt2015/th-en/spm-moses/16000-130000/checkpoint_best \
64 \
4 \
./dataset/spm/scb-mt-en-th-2020+mt-opus/th-en/spm.th.v-16000.cased.model
1.1.4 spm→spm
CUDA_VISIBLE_DEVICES=0 bash ./scripts/evaluate_model.iwslt2015.sh \
./checkpoints/scb-mt-en-th-2020+mt-opus/th-en/spm-spm/32000-joined/checkpoint_best.pt \
./dataset/binarized/scb-mt-en-th-2020+mt-opus/th-en/spm-spm/32000-joined \
th \
en \
sentencepiece \
sentencepiece \
./iwslt_2015/test/tst2010-2013_th-en.th \
./iwslt_2015/test/tst2010-2013_th-en.en \
./translation_results/scb-mt-en-th-2020+mt-opus@eval_on@iwslt2015/th-en/spm-spm/32000-joined/checkpoint_best \
64 \
4 \
./dataset/spm/scb-mt-en-th-2020+mt-opus/th-en/spm.th.v-16000.cased.model
Pretokenize Thai target sentences with PyThaiNLP's newmm dictionary-based word tokenizer with the following script.
python ./scripts/th_newmm_space_tokenize.py \
./iwslt_2015/test/tst2010-2013_th-en.th \
./iwslt_2015/test/tst2010-2013_th-en.th.ref.tok
1.2.1 moses→newmm_space
CUDA_VISIBLE_DEVICES=0 bash ./scripts/evaluate_model.iwslt2015.sh \
./checkpoints/scb-mt-en-th-2020+mt-opus/en-th/moses-newmm_space/130000-130000/checkpoint_best.pt \
./dataset/binarized/scb-mt-en-th-2020+mt-opus/en-th/moses-newmm_space/130000-130000 \
en \
th \
word \
word \
./iwslt_2015/test/tst2010-2013_th-en.en \
./iwslt_2015/test/tst2010-2013_th-en.th \
./translation_results/scb-mt-en-th-2020+mt-opus@eval_on@iwslt2015/en-th/moses-newmm_space/130000-130000/checkpoint_best \
64 \
4
1.2.2 moses→spm
CUDA_VISIBLE_DEVICES=0 bash ./scripts/evaluate_model.iwslt2015.sh \
./checkpoints/scb-mt-en-th-2020+mt-opus/en-th/moses-spm/130000-16000/checkpoint_best.pt \
./dataset/binarized/scb-mt-en-th-2020+mt-opus/en-th/moses-spm/130000-16000 \
en \
th \
word \
sentencepiece \
./iwslt_2015/test/tst2010-2013_th-en.en \
./iwslt_2015/test/tst2010-2013_th-en.th \
./translation_results/scb-mt-en-th-2020+mt-opus@eval_on@iwslt2015/en-th/moses-spm/130000-16000/checkpoint_best \
64 \
4
1.2.3 spm→newmm_space
CUDA_VISIBLE_DEVICES=0 bash ./scripts/evaluate_model.iwslt2015.sh \
./checkpoints/scb-mt-en-th-2020+mt-opus/en-th/spm-newmm_space/16000-130000/checkpoint_best.pt \
./dataset/binarized/scb-mt-en-th-2020+mt-opus/en-th/spm-newmm_space/16000-130000 \
en \
th \
sentencepiece \
word \
./iwslt_2015/test/tst2010-2013_th-en.en \
./iwslt_2015/test/tst2010-2013_th-en.th \
./translation_results/scb-mt-en-th-2020+mt-opus@eval_on@iwslt2015/en-th/spm-newmm_space/16000-130000/checkpoint_best \
64 \
4 \
./dataset/spm/scb-mt-en-th-2020+mt-opus/en-th/spm.en.v-16000.cased.model
1.2.4 spm→spm
CUDA_VISIBLE_DEVICES=0 bash ./scripts/evaluate_model.iwslt2015.sh \
./checkpoints/scb-mt-en-th-2020+mt-opus/en-th/spm-spm/32000-joined/checkpoint_best.pt \
./dataset/binarized/scb-mt-en-th-2020+mt-opus/en-th/spm-spm/32000-joined \
en \
th \
sentencepiece \
sentencepiece \
./iwslt_2015/test/tst2010-2013_th-en.en \
./iwslt_2015/test/tst2010-2013_th-en.th \
./translation_results/scb-mt-en-th-2020+mt-opus@eval_on@iwslt2015/en-th/spm-spm/32000-joined/checkpoint_best \
64 \
4 \
./dataset/spm/scb-mt-en-th-2020+mt-opus/en-th/spm.en.v-16000.cased.model