-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_imgreid_xent_regularizer.py
673 lines (576 loc) · 28.2 KB
/
train_imgreid_xent_regularizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
from __future__ import print_function
from __future__ import division
import os
import sys
import time
import datetime
import argparse
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
from torchreid import data_manager
from torchreid.dataset_loader_custom import ImageDataset
from torchreid import transforms as T
from torchreid import models
from torchreid.losses import CrossEntropyLabelSmooth, DeepSupervision, AngularLabelSmooth, AngleLoss, ConfidencePenalty, JSD_loss, MultiHeadLossAutoTune, FocalLoss
from torchreid.utils.iotools import save_checkpoint, check_isfile
from torchreid.utils.avgmeter import AverageMeter
from torchreid.utils.logger import Logger
from torchreid.utils.torchtools import set_bn_to_eval, count_num_param
from torchreid.utils.reidtools import visualize_ranked_results, drawTSNE
from torchreid.eval_metrics import evaluate
from torchreid.optimizers import init_optim
from torchreid.utils.re_ranking import re_ranking
from tensorboardX import SummaryWriter
import random
import pdb
## GRADCAM imports
import torchvision
from torchreid.utils.visualize_class_activation_map import GradCam, show_cam_on_image
from torchreid.utils.iotools import mkdir_if_missing
## ECN
from torchreid.utils.ecn import ECN_custom
parser = argparse.ArgumentParser(description='Train image model with cross entropy loss')
# Datasets
parser.add_argument('--root', type=str, default='data',
help="root path to data directory")
parser.add_argument('-d', '--dataset', type=str, default='market1501',
choices=data_manager.get_names())
parser.add_argument('-j', '--workers', default=4, type=int,
help="number of data loading workers (default: 4)")
parser.add_argument('--height', type=int, default=256,
help="height of an image (default: 256)")
parser.add_argument('--width', type=int, default=128,
help="width of an image (default: 128)")
parser.add_argument('--split-id', type=int, default=0,
help="split index (0-based)")
# CUHK03-specific setting
parser.add_argument('--cuhk03-labeled', action='store_true',
help="use labeled images, if false, detected images are used (default: False)")
parser.add_argument('--cuhk03-classic-split', action='store_true',
help="use classic split by Li et al. CVPR'14 (default: False)")
parser.add_argument('--use-metric-cuhk03', action='store_true',
help="use cuhk03-metric (default: False)")
# Optimization options
parser.add_argument('--optim', type=str, default='adam',
help="optimization algorithm (see optimizers.py)")
parser.add_argument('--max-epoch', default=60, type=int,
help="maximum epochs to run")
parser.add_argument('--start-epoch', default=0, type=int,
help="manual epoch number (useful on restarts)")
parser.add_argument('--train-batch', default=32, type=int,
help="train batch size")
parser.add_argument('--test-batch', default=100, type=int,
help="test batch size")
parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float,
help="initial learning rate")
parser.add_argument('--stepsize', default=[20, 40], nargs='+', type=int,
help="stepsize to decay learning rate")
parser.add_argument('--gamma', default=0.1, type=float,
help="learning rate decay")
parser.add_argument('--weight-decay', default=5e-04, type=float,
help="weight decay (default: 5e-04)")
parser.add_argument('--fixbase-epoch', default=0, type=int,
help="epochs to fix base network (only train classifier, default: 0)")
parser.add_argument('--fixbase-lr', default=0.0003, type=float,
help="learning rate (when base network is frozen)")
parser.add_argument('--freeze-bn', action='store_true',
help="freeze running statistics in BatchNorm layers during training (default: False)")
parser.add_argument('--label-smooth', action='store_true',
help="use label smoothing regularizer in cross entropy loss")
parser.add_argument('--scheduler', action='store_true',
help="Enable learning rate schedular")
# Architecture
parser.add_argument('-a', '--arch', type=str, default='resnet50', choices=models.get_names())
# Miscs
parser.add_argument('--print-freq', type=int, default=10,
help="print frequency")
parser.add_argument('--seed', type=int, default=1,
help="manual seed")
parser.add_argument('--resume', type=str, default='', metavar='PATH')
parser.add_argument('--load-weights', type=str, default='',
help="load pretrained weights but ignores layers that don't match in size")
parser.add_argument('--evaluate', action='store_true',
help="evaluation only")
parser.add_argument('--eval-step', type=int, default=-1,
help="run evaluation for every N epochs (set to -1 to test after training)")
parser.add_argument('--save-epoch', type=int, default=-1,
help="run evaluation for every N epochs (set to -1 to test after training)")
parser.add_argument('--start-eval', type=int, default=0,
help="start to evaluate after specific epoch")
parser.add_argument('--save-dir', type=str, default='log')
parser.add_argument('--use-cpu', action='store_true',
help="use cpu")
parser.add_argument('--gpu-devices', default='0', type=str,
help='gpu device ids for CUDA_VISIBLE_DEVICES')
parser.add_argument('--use-avai-gpus', action='store_true',
help="use available gpus instead of specified devices (this is useful when using managed clusters)")
parser.add_argument('--visualize-ranks', action='store_true',
help="visualize ranked results, only available in evaluation mode (default: False)")
parser.add_argument('--lambda-xent', type=float, default=1,
help="weight to balance cross entropy loss")
parser.add_argument('--use-angular', action='store_true',
help="Use Angular Softmax (default: False)")
parser.add_argument('--draw-tsne', action='store_true',
help="Plot TSNE Clusters (default: False)")
parser.add_argument('--tsne-labels',type=int, default=3,
help="Number of TSNE Clusters (Default: 3)")
parser.add_argument('--confidence-penalty', action='store_true',
help="use confidence penalty regularizer in cross entropy loss")
parser.add_argument('--focal-loss', action='store_true',
help="use Focal Loss")
parser.add_argument('--confidence-beta',type=float, default=0,
help="set confidence penalty beta ")
parser.add_argument('--focal-gamma',type=float, default=1,
help="set gamma of Focal loss")
parser.add_argument('--label-epsilon',type=float, default=0.1,
help="set label smoothing epsilon ")
parser.add_argument('--jsd', action='store_true',
help="use JSD in addition cross entropy loss")
parser.add_argument('--single-folder', default='', type=str,
help='specific folder to extract features')
parser.add_argument('--auto-tune-mtl', action='store_true',
help="Use Loss AutoTune")
# Re-Ranking arguments
parser.add_argument("--re-ranking", action='store_true',
help="Use k-reciprocal re-ranking (default: False)")
parser.add_argument("--use-ecn", action='store_true',
help="Use ECN re-ranking (default: False)")
parser.add_argument("--use-cosine", action='store_true',
help="Use cosine distance to rank (default: False)")
parser.add_argument('-sw', '--split-wild', type=str, default='large',
choices=["small", "medium", "large"])
def main(args):
args = parser.parse_args(args)
#global best_rank1
best_rank1 = -np.inf
torch.manual_seed(args.seed)
# np.random.seed(args.seed)
# random.seed(args.seed)
if not args.use_avai_gpus: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
use_gpu = torch.cuda.is_available()
if args.use_cpu: use_gpu = False
if not args.evaluate:
sys.stdout = Logger(osp.join(args.save_dir, 'log_train.txt'))
else:
test_dir = args.save_dir
if args.save_dir =='log':
if args.resume:
test_dir = os.path.dirname(args.resume)
else:
test_dir = os.path.dirname(args.load_weights)
sys.stdout = Logger(osp.join(test_dir, 'log_test.txt'))
print("==========\nArgs:{}\n==========".format(args))
if use_gpu:
print("Currently using GPU {}".format(args.gpu_devices))
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
else:
print("Currently using CPU (GPU is highly recommended)")
print("Initializing dataset {}".format(args.dataset))
dataset = data_manager.init_imgreid_dataset(
root=args.root, name=args.dataset, split_id=args.split_id,
cuhk03_labeled=args.cuhk03_labeled, cuhk03_classic_split=args.cuhk03_classic_split, split_wild=args.split_wild
)
transform_train = T.Compose([
T.Random2DTranslation(args.height, args.width),
#T.Resize((args.height, args.width)),
T.RandomSizedEarser(),
T.RandomHorizontalFlip_custom(),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
transform_test = T.Compose([
T.Resize((args.height, args.width)),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
pin_memory = True if use_gpu else False
trainloader = DataLoader(
ImageDataset(dataset.train, transform=transform_train),
batch_size=args.train_batch, shuffle=True, num_workers=args.workers,
pin_memory=pin_memory, drop_last=True,
)
queryloader = DataLoader(
ImageDataset(dataset.query, transform=transform_test, return_path=args.draw_tsne),
batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False,
)
galleryloader = DataLoader(
ImageDataset(dataset.gallery, transform=transform_test, return_path=args.draw_tsne),
batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False,
)
print("Initializing model: {}".format(args.arch))
model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent','angular'} if args.use_angular else {'xent'}, use_gpu=use_gpu)
print("Model size: {:.3f} M".format(count_num_param(model)))
use_autoTune = False
if not(args.use_angular):
if args.label_smooth:
print("Using Label Smoothing with epsilon", args.label_epsilon)
criterion = CrossEntropyLabelSmooth(num_classes=dataset.num_train_pids, epsilon=args.label_epsilon, use_gpu=use_gpu)
elif args.focal_loss:
print("Using Focal Loss with gamma=", args.focal_gamma)
criterion = FocalLoss(gamma=args.focal_gamma)
else:
print("Using Normal Cross-Entropy")
criterion = nn.CrossEntropyLoss()
if args.jsd:
print("Using JSD regularizer")
criterion = (criterion,JSD_loss(dataset.num_train_pids))
if args.auto_tune_mtl:
print("Using AutoTune")
use_autoTune = True
criterion = MultiHeadLossAutoTune(list(criterion),[args.lambda_xent, args.confidence_beta]).cuda()
else:
if args.confidence_penalty:
print("Using Confidence Penalty", args.confidence_beta)
criterion = (criterion,ConfidencePenalty())
if args.auto_tune_mtl and args.confidence_penalty:
print("Using AutoTune")
use_autoTune = True
criterion = MultiHeadLossAutoTune(list(criterion),[args.lambda_xent, -args.confidence_beta]).cuda()
else:
if args.label_smooth:
print("Using Angular Label Smoothing")
criterion = AngularLabelSmooth(num_classes=dataset.num_train_pids, use_gpu=use_gpu)
else:
print("Using Angular Loss")
criterion = AngleLoss()
if use_autoTune:
optimizer = init_optim(args.optim, list(model.parameters()) + list(criterion.parameters()), args.lr, args.weight_decay)
else:
optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay)
if args.scheduler:
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.stepsize, gamma=args.gamma)
if args.fixbase_epoch > 0:
if hasattr(model, 'classifier') and isinstance(model.classifier, nn.Module):
if use_autoTune:
optimizer_tmp = init_optim(args.optim, list(model.classifier.parameters())+list(criterion.parameters()), args.fixbase_lr, args.weight_decay)
else:
optimizer_tmp = init_optim(args.optim, model.classifier.parameters(), args.fixbase_lr, args.weight_decay)
else:
print("Warn: model has no attribute 'classifier' and fixbase_epoch is reset to 0")
args.fixbase_epoch = 0
if args.load_weights and check_isfile(args.load_weights):
# load pretrained weights but ignore layers that don't match in size
checkpoint = torch.load(args.load_weights)
pretrain_dict = checkpoint['state_dict']
model_dict = model.state_dict()
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
model_dict.update(pretrain_dict)
model.load_state_dict(model_dict)
print("Loaded pretrained weights from '{}'".format(args.load_weights))
if args.resume and check_isfile(args.resume):
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
args.start_epoch = checkpoint['epoch'] + 1
best_rank1 = checkpoint['rank1']
print("Loaded checkpoint from '{}'".format(args.resume))
print("- start_epoch: {}\n- rank1: {}".format(args.start_epoch, best_rank1))
if use_gpu:
model = nn.DataParallel(model).cuda()
if args.single_folder != '':
extract_features(model, use_gpu, args,transform_test, return_distmat=False)
return
if args.evaluate:
print("Evaluate only")
test_dir = args.save_dir
if args.save_dir =='log':
if args.resume:
test_dir = os.path.dirname(args.resume)
else:
test_dir = os.path.dirname(args.load_weights)
distmat = test(model, queryloader, galleryloader, use_gpu, args,writer=None,epoch=-1, return_distmat=True,tsne_clusters=args.tsne_labels)
if args.visualize_ranks:
visualize_ranked_results(
distmat, dataset,
save_dir=osp.join(test_dir, 'ranked_results'),
topk=10,
)
return
writer = SummaryWriter(log_dir=osp.join(args.save_dir, 'tensorboard'))
start_time = time.time()
train_time = 0
best_epoch = args.start_epoch
print("==> Start training")
if args.fixbase_epoch > 0:
print("Train classifier for {} epochs while keeping base network frozen".format(args.fixbase_epoch))
for epoch in range(args.fixbase_epoch):
start_train_time = time.time()
train(epoch, model, criterion, optimizer_tmp, trainloader, use_gpu,writer, args, freeze_bn=True)
train_time += round(time.time() - start_train_time)
del optimizer_tmp
print("Now open all layers for training")
best_epoch = 0
for epoch in range(args.start_epoch, args.max_epoch):
start_train_time = time.time()
train(epoch, model, criterion, optimizer, trainloader, use_gpu,writer, args)
train_time += round(time.time() - start_train_time)
if args.scheduler:
scheduler.step()
if (epoch + 1) > args.start_eval and ((args.save_epoch > 0 and (epoch + 1) % args.save_epoch == 0) or (args.eval_step > 0 and (epoch + 1) % args.eval_step == 0) or (epoch + 1) == args.max_epoch):
if (epoch + 1) == args.max_epoch:
if use_gpu:
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
save_checkpoint({
'state_dict': state_dict,
'rank1': -1,
'epoch': epoch,
}, False, osp.join(args.save_dir, 'beforeTesting_checkpoint_ep' + str(epoch + 1) + '.pth.tar'))
is_best = False
rank1 = -1
if args.eval_step > 0:
print("==> Test")
rank1 = test(model, queryloader, galleryloader, use_gpu, args,writer=writer,epoch=epoch)
is_best = rank1 > best_rank1
if is_best:
best_rank1 = rank1
best_epoch = epoch + 1
if use_gpu:
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
save_checkpoint({
'state_dict': state_dict,
'rank1': rank1,
'epoch': epoch,
}, is_best, osp.join(args.save_dir, 'checkpoint_ep' + str(epoch + 1) + '.pth.tar'))
print("==> Best Rank-1 {:.1%}, achieved at epoch {}".format(best_rank1, best_epoch))
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
train_time = str(datetime.timedelta(seconds=train_time))
print("Finished. Total elapsed time (h:m:s): {}. Training time (h:m:s): {}.".format(elapsed, train_time))
return best_rank1, best_epoch
def train(epoch, model, criterion, optimizer, trainloader, use_gpu,writer, args,freeze_bn=False):
losses = AverageMeter()
xent_losses = AverageMeter()
confidence_losses = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
printed = False
model.train()
if freeze_bn or args.freeze_bn:
model.apply(set_bn_to_eval)
end = time.time()
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
data_time.update(time.time() - end)
if use_gpu:
imgs, pids = imgs.cuda(), pids.cuda()
outputs = model(imgs)
text_dict = {}
if not isinstance(criterion, MultiHeadLossAutoTune):
if isinstance(outputs, tuple):
xent_loss = DeepSupervision(criterion[0], outputs, pids)
confidence_loss = DeepSupervision(criterion[1],outputs,pids)
else:
xent_loss = criterion[0](outputs, pids)
confidence_loss = criterion[1](outputs,pids)
if args.confidence_penalty:
loss = args.lambda_xent *xent_loss - args.confidence_beta *confidence_loss
elif args.jsd:
loss = args.lambda_xent *xent_loss + args.confidence_beta *confidence_loss
else:
import pdb; pdb.set_trace()
loss = args.lambda_xent *xent_loss
else:
loss, individual_losses = criterion([outputs, outputs], [pids, pids])
xent_loss = individual_losses[0]
confidence_loss = individual_losses[1]
text_dict = criterion.batch_meta()
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
losses.update(loss.item(), pids.size(0))
xent_losses.update(xent_loss.item(), pids.size(0))
confidence_losses.update(confidence_loss.item(), pids.size(0))
if (batch_idx + 1) % args.print_freq == 0:
if not printed:
printed = True
else:
# Clean the current line
sys.stdout.console.write("\033[F\033[K")
#sys.stdout.console.write("\033[K")
if args.jsd:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.4f} ({data_time.avg:.4f})\t'
'Xent_Loss {xent_loss.val:.4f} ({xent_loss.avg:.4f})\t'
'JSD_Loss {confidence_loss.val:.4f} ({confidence_loss.avg:.4f})\t'
'Total_Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
epoch + 1, batch_idx + 1, len(trainloader), batch_time=batch_time,
data_time=data_time,xent_loss=xent_losses,confidence_loss=confidence_losses, loss=losses), text_dict)
else:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.4f} ({data_time.avg:.4f})\t'
'Xent_Loss {xent_loss.val:.4f} ({xent_loss.avg:.4f})\t'
'Confi_Loss {confidence_loss.val:.4f} ({confidence_loss.avg:.4f})\t'
'Total_Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
epoch + 1, batch_idx + 1, len(trainloader), batch_time=batch_time,
data_time=data_time,xent_loss=xent_losses,confidence_loss=confidence_losses, loss=losses), text_dict)
end = time.time()
writer.add_scalars(
'loss',
dict(loss=losses.avg,
xent_loss = xent_losses.avg,
confidence_loss = confidence_losses.avg),
epoch + 1)
def test(model, queryloader, galleryloader, use_gpu, args,writer,epoch, ranks=[1, 5, 10, 20], return_distmat=False,tsne_clusters=3):
batch_time = AverageMeter()
model.eval()
with torch.no_grad():
qf, q_pids, q_camids = [], [], []
q_imgPath = []
for batch_idx, (input) in enumerate(queryloader):
if not args.draw_tsne:
imgs, pids, camids = input
else:
imgs, pids, camids,img_path = input
q_imgPath.extend(img_path)
if use_gpu: imgs = imgs.cuda()
end = time.time()
features = model(imgs)
batch_time.update(time.time() - end)
features = features.data.cpu()
qf.append(features)
q_pids.extend(pids)
q_camids.extend(camids)
qf = torch.cat(qf, 0)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
q_imgPath = np.asarray(q_imgPath)
print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1)))
gf, g_pids, g_camids = [], [], []
g_imgPath = []
end = time.time()
for batch_idx, (input) in enumerate(galleryloader):
if not args.draw_tsne:
imgs, pids, camids = input
else:
imgs, pids, camids,img_path = input
g_imgPath.extend(img_path)
if use_gpu: imgs = imgs.cuda()
end = time.time()
features = model(imgs)
batch_time.update(time.time() - end)
features = features.data.cpu()
gf.append(features)
g_pids.extend(pids)
g_camids.extend(camids)
gf = torch.cat(gf, 0)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
g_imgPath = np.asarray(q_imgPath)
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
print("==> BatchTime(s)/BatchSize(img): {:.3f}/{}".format(batch_time.avg, args.test_batch))
if args.use_ecn:
distmat= (ECN_custom(qf,gf,k=25,t=3,q=8,method='rankdist',use_cosine=args.use_cosine)).transpose()
elif not args.use_cosine:
m, n = qf.size(0), gf.size(0)
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat.addmm_(1, -2, qf, gf.t())
distmat = distmat.numpy()
if args.re_ranking:
distmat_q_q = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, m) + \
torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, m).t()
distmat_q_q.addmm_(1, -2, qf, qf.t())
distmat_q_q = distmat_q_q.numpy()
distmat_g_g = torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, n).t()
distmat_g_g.addmm_(1, -2, gf, gf.t())
distmat_g_g = distmat_g_g.numpy()
distmat = re_ranking(distmat, distmat_q_q, distmat_g_g, k1=20, k2=6, lambda_value=0.3)
else:
m, n = qf.size(0), gf.size(0)
qf_norm = qf/qf.norm(dim=1)[:,None]
gf_norm = gf/gf.norm(dim=1)[:,None]
distmat = torch.addmm(1,torch.ones((m,n)),-1,qf_norm,gf_norm.transpose(0,1))
distmat = distmat.numpy()
if args.re_ranking:
distmat_q_q = torch.addmm(1,torch.ones((m,m)),-1,qf_norm,qf_norm.transpose(0,1))
distmat_q_q = distmat_q_q.numpy()
distmat_g_g = torch.addmm(1,torch.ones((n,n)),-1,gf_norm,gf_norm.transpose(0,1))
distmat_g_g = distmat_g_g.numpy()
distmat = re_ranking(distmat, distmat_q_q, distmat_g_g, k1=20, k2=6, lambda_value=0.3)
print("Computing CMC and mAP")
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids, use_metric_cuhk03=args.use_metric_cuhk03)
print("Results ----------")
print("mAP: {:.1%}".format(mAP))
print("CMC curve")
for r in ranks:
print("Rank-{:<3}: {:.1%}".format(r, cmc[r-1]))
print("------------------")
if args.draw_tsne:
drawTSNE(qf,gf,q_pids, g_pids, q_camids, g_camids,q_imgPath, g_imgPath,tsne_clusters,args.save_dir)
if return_distmat:
return distmat
if writer != None:
writer.add_scalars(
'Testing',
dict(rank_1=cmc[0],
rank_5 = cmc[4],
mAP=mAP),
epoch + 1)
return cmc[0]
def extract_features(model, use_gpu, args,test_transform, return_distmat=False):
batch_size = 64
def load_dataset():
test_dataset = torchvision.datasets.ImageFolder(
root=args.single_folder,
transform=test_transform
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=batch_size,
num_workers=0,
shuffle=False
)
return test_loader, test_dataset
loader, dataset = load_dataset()
model.eval()
with torch.no_grad():
qf = []
for batch_idx, (input) in enumerate(loader):
if not args.draw_tsne:
imgs, _, _ = input
else:
imgs, _, _,_ = input
if use_gpu: imgs = imgs.cuda()
end = time.time()
features = model(imgs)
features = features.data.cpu()
qf.append(features)
qf = torch.cat(qf, 0)
m = qf.size(0)
distmat_q_q = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, m) + \
torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, m).t()
distmat_q_q.addmm_(1, -2, qf, qf.t())
distmat_q_q = distmat_q_q.numpy()
print("Pairwise distance")
print(distmat_q_q)
model.module.cam = True
grad_cam = GradCam(model = model, target_layer_names = ["35"], use_cuda=True)
for batch_idx, (imgs,_) in enumerate(loader):
for i,(img) in enumerate(imgs):
img_path = dataset.samples[batch_idx*batch_size+i][0]
mask,_ = grad_cam(img.unsqueeze_(0),args, None)
dir = os.path.join(args.save_dir,'heatMaps')
mkdir_if_missing(dir)
orig_img = cv2.imread(img_path,1)
cv_img = np.float32(cv2.resize(orig_img, (args.width, args.height))) / 255
outptut_img = show_cam_on_image(cv_img, mask)
cv2.imwrite(os.path.join(dir,os.path.splitext(os.path.basename(img_path))[0]+'_heatmap.jpg'),outptut_img)
#utils_torch.save_image(img,os.path.join(dir,os.path.splitext(os.path.basename(dataset.query[batch_idx*args.test_batch+i][0]))[0]+'_PIL_gb.jpg'))
cv2.imwrite(os.path.join(dir,os.path.splitext(os.path.basename(img_path))[0]+'.jpg'),orig_img)
model.module.cam = False
if __name__ == '__main__':
main(sys.argv[1:])