-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstream_online.py
287 lines (238 loc) · 8.14 KB
/
stream_online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import numpy as np
import os
import classificador_online as cl_online
import aquisicao as aq
import filtros as filt
import Fcar as fc
import time as tm
import sys; sys.path.append('..')
from openbci import cyton as bci
import logging
from scipy import signal
from scipy.fftpack import fft
import matplotlib.pyplot as plt
n_freq=4 #Número de frequências
n_trial=8 #aquisições feitas
freq=np.array([6,10,12,15]) # Frequências
n_elec=8 #Número de eletrodos
t_sinal=3 #Tempo de coleta
t_online=15
fs=250 #Frequência de amostragem
t_ini=2 #tempo inicial de aquisição
trial=[1,2,3,4,5,6,7,8]
n_win=4 #Número de janelas
per_train=0.75 #Porcentagem de treinamento
individuo='Teste' #Nome do individuo
create_win=0
teste_class=0
n_signal=n_trial*n_win*n_freq #número de sinais
dim_sig=n_elec*n_freq #número de sinais por eletrodo
cont_aq=-1
cont=-1
Data=np.zeros([fs*t_sinal,n_elec])
Data_f=np.zeros([fs*t_sinal,n_elec])
Data_f_all=np.zeros([fs*t_online,n_elec])
Data_aq=np.zeros([fs*t_online,n_elec])
X=np.zeros([1,n_freq*n_elec+1])
cont_time=0
n_samples_aq=fs*t_online
n_samples=fs*t_sinal
#teste de valores
cont_freq=0
freq_teste=12
#Filtro passa banda 5 à 50 Hz
f_low=5
f_high=50
filter_order=8
nyq = 0.5 * fs
low = f_low / nyq
high = f_high / nyq
b_PB, a_PB = signal.butter(filter_order, [low, high], btype='band')
#Filtro notch 60 Hz
Q=30.0
w0 = 60/(fs/2)
b_FN, a_FN=signal.iirnotch(w0,Q);
# treino e filtro
treino=1
aplica_filtro=1
classifica_online=0
teste_aq_online=0
compara_cod=1
#Funções
def start_stream(board): #Inicia a gravacao
global cont
global cont_aq
cont_aq=-1
cont=-1 #inicia cont
board.start_streaming(return_Data)
board.stop
board.print_bytes_in()
def return_Data(sample):
global n_aq,n_freq
global fs
global t_sinal
global cont
global cont_aq
global n_samples
global Data
global b_PB,a_PB
global b_FN,a_FN
global X,R,w
global Data_f,Data_f_all
global cont_time
global cont_freq
global freq_teste
vet_aux=np.zeros([1,4])
Data[cont,:]=sample.channel_data
Data_aq[cont_aq,:]=Data[cont,:]
cont=cont+1
cont_aq=cont_aq+1
L_cont=0
xf=np.linspace(0,30,t_sinal*30)
if cont==n_samples:
cont_time=cont_time+1
for elec in range(n_elec):
signal_f=signal.lfilter(b_PB,a_PB,Data_aq[:,elec])
signal_f=signal.lfilter(b_FN,a_FN,signal_f)
Data_f[:,elec]=signal_f[((cont_time-1)*t_sinal*fs)\
:cont_time*t_sinal*fs]
Data_f_all[:,elec]=signal_f
Data_f_c=fc.car_filter(Data_f,n_elec,t_sinal,fs)
L_cont=0
for e in range(0,n_elec): # Para cada eletrodo, fft calculada
sig=Data_f_c[:,e]
sig_FFT=np.abs(fft(sig))/max(np.abs((fft(sig))))
for fr in freq:
ind_fr=fr*(t_sinal)
ind_fr=int(ind_fr)
X[0,L_cont]=sig_FFT[ind_fr-1]
L_cont=L_cont+1
X[0,n_freq*n_elec]=1
y=cl_online.return_y(X,w,n_freq)
fr_result=cl_online.result(y,n_freq)
print('\n Frequência: '+str(fr_result)+'Hz \n')
if freq_teste==fr_result:
cont_freq=cont_freq+1
cont=0
Data=Data*0
if cont_aq==n_samples_aq:
print('\n Aquisição: '+str(cont_aq)+'\n')
os.chdir('/home/pi/Desktop/BCI/online/scripts/Data_record/'+individuo)
np.save('Data_record',Data_f_all)
os.chdir('/home/pi/Desktop/BCI/online/scripts/')
sys.exit()
def stream_data():
n_freq=4 #Número de frequências
n_trial=1 #Número de trials
freq=np.array([6,10,12,15]) #frequências
n_electrodes=8 #Número de eletrodos
t_collect=3 #tempo de coleta (12 segundos) e 2 segundos para descarte
fs=250 #Frequência de amostragem
n_samples=fs*t_collect #Número de amostras
Data=np.zeros([n_samples,n_electrodes]) #Matriz de dados
#auxiliares:
freq_select=0
trial_select=0
cont=0
filtro_car=1
filtro=1
start_arm=1
time_trash=3
individuo='Teste' #Nome do individuo
if __name__ == '__main__':
# port = '/dev/tty.OpenBCI-DN008VTF'
#port = '/dev/tty.usbserial-DB00JAM0'
# port = '/dev/tty.OpenBCI-DN0096XA'
port = '/dev/ttyUSB0' #port
baud = 115200 #bits
logging.basicConfig(filename="test.log"\
,format='%(asctime)s - %(levelname)s : %(message)s',level=logging.DEBUG)
logging.info('---------LOG START-------------')
board = bci.OpenBCICyton(port=port, scaled_output=False, log=True)
print("Board Instantiated")
board.ser.write(str.encode('allon'))
tm.sleep(3)
#Cria e acessa pastas
print("\n Press ENTER to start \n");
OP=input()
matriz_Data=start_stream(board)
return matriz_Data
#Principal
if treino==1:
runfile('/home/pi/Desktop/BCI/online/scripts/stream_time.py',\
wdir='/home/pi/Desktop/BCI/online/scripts/')
if aplica_filtro==1:
runfile('/home/pi/Desktop/BCI/online/scripts/aplica_filtro.py',\
wdir='/home/pi/Desktop/TCC/scripts/treino')
runfile('/home/pi/Desktop/TCC/scripts/treino/main.py',\
wdir='/home/pi/Desktop/TCC/scripts/treino')
if classifica_online==1:
R=np.load('/home/pi/Desktop/BCI/online/scripts/Data_record/'\
+individuo+'/Data_FILT/R.npy')
w=np.load('/home/pi/Desktop/BCI/online/scripts/Data_record/'\
+individuo+'/Data_FILT/w.npy')
stream_data()
if teste_aq_online==1:
R=np.load('/home/pi/Desktop/BCI/online/scripts/Data_record/'\
+individuo+'/Data_FILT/R.npy')
w=np.load('/home/pi/Desktop/BCI/online/scripts/Data_record/'\
+individuo+'/Data_FILT/w.npy')
sinal6=np.load('/home/pi/Desktop/BCI/online/scripts/Data_record/'\
+individuo+'/Data_6Hz.npy')
sinal10=np.load('/home/pi/Desktop/BCI/online/scripts/Data_record/'\
+individuo+'/Data_10Hz.npy')
sinal12=np.load('/home/pi/Desktop/BCI/online/scripts/Data_record/'\
+individuo+'/Data_12Hz.npy')
sinal15=np.load('/home/pi/Desktop/BCI/online/scripts/Data_record/'\
+individuo+'/Data_15Hz.npy')
sinal=fc.car_filter(sinal15,n_elec,t_online,fs)
amostra_freq=t_sinal*18
amostra_temp=t_sinal*fs
ini=750;
fim=ini+750;
aux=int(t_online/t_sinal)
mat_sig=np.zeros([fs*t_sinal,n_elec])
for e in range(0,aux-1):
fig, axs=plt.subplots(2)
xt=np.linspace(0,t_sinal,amostra_temp)
xf=np.linspace(0,18,amostra_freq)
sig=sinal[ini:fim,1]
sig_FFT=np.abs(fft(sig))/max(np.abs((fft(sig))))
axs[0].plot(xt,sig)
axs[0].set(xlabel='Tempo (s)', ylabel='Amplitude')
axs[0].set_title('Sinal '+str(e))
axs[1].plot(xf,sig_FFT[0:amostra_freq],'r')
axs[1].set(xlabel='Frequência (Hz)', ylabel='Magnitude')
plt.show()
del fig,axs
ini=ini+750
fim=fim+750
ini=750
fim=ini+750
for k in range(0,4):
mat_sig=sinal[ini:fim,:]
os.chdir('/home/pi/Desktop/BCI/online/scripts/Data_record/'\
+individuo+'/Data_FILT')
filename='SSVEP_15Hz_Trial9_'+str(k)+'.npy'
np.save(filename,mat_sig)
ini=ini+750
fim=fim+750
if compara_cod==1:
Xv=np.ones([4,n_trial*n_win+1])
R=np.load('/home/pi/Desktop/BCI/online/scripts/Data_record/'\
+individuo+'/Data_FILT/R.npy')
w=np.load('/home/pi/Desktop/BCI/online/scripts/Data_record/'\
+individuo+'/Data_FILT/w.npy')
for k in range(0,4):
Data_f_c=np.load('/home/pi/Desktop/BCI/online/scripts/'\
+individuo+'/Data_FILT/SSVEP_15Hz_Trial9_'+str(k)+'.npy')
L_cont=0
for e in range(0,n_elec): # Para cada eletrodo, fft calculada
sig=Data_f_c[:,e]
sig_FFT=np.abs(fft(sig))/max(np.abs((fft(sig))))
for fr in freq:
ind_fr=fr*(t_sinal)
ind_fr=int(ind_fr)
Xv[k,L_cont]=sig_FFT[ind_fr-1]
L_cont=L_cont+1
y=np.dot(Xv,np.transpose(w))