forked from dsgiitr/VisualML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatas.js
123 lines (104 loc) · 4.15 KB
/
datas.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
export const IMAGE_H = 28;
export const IMAGE_W = 28;
const IMAGE_SIZE = IMAGE_H * IMAGE_W;
const NUM_CLASSES = 10;
const NUM_DATASET_ELEMENTS = 65000;
const NUM_TRAIN_ELEMENTS = 55000;
const NUM_TEST_ELEMENTS = NUM_DATASET_ELEMENTS - NUM_TRAIN_ELEMENTS;
const MNIST_IMAGES_SPRITE_PATH =
'https://storage.googleapis.com/learnjs-data/model-builder/mnist_images.png';
const MNIST_LABELS_PATH =
'https://storage.googleapis.com/learnjs-data/model-builder/mnist_labels_uint8';
/**
* A class that fetches the sprited MNIST dataset and provide data as
* tf.Tensors.
*/
export class MnistData {
constructor() {}
async load() {
// Make a request for the MNIST sprited image.
const img = new Image();
const canvas = document.createElement('canvas');
const ctx = canvas.getContext('2d');
const imgRequest = new Promise((resolve, reject) => {
img.crossOrigin = '';
img.onload = () => {
img.width = img.naturalWidth;
img.height = img.naturalHeight;
const datasetBytesBuffer =
new ArrayBuffer(NUM_DATASET_ELEMENTS * IMAGE_SIZE * 4);
const chunkSize = 5000;
canvas.width = img.width;
canvas.height = chunkSize;
for (let i = 0; i < NUM_DATASET_ELEMENTS / chunkSize; i++) {
const datasetBytesView = new Float32Array(
datasetBytesBuffer, i * IMAGE_SIZE * chunkSize * 4,
IMAGE_SIZE * chunkSize);
ctx.drawImage(
img, 0, i * chunkSize, img.width, chunkSize, 0, 0, img.width,
chunkSize);
const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
for (let j = 0; j < imageData.data.length / 4; j++) {
// All channels hold an equal value since the image is grayscale, so
// just read the red channel.
datasetBytesView[j] = imageData.data[j * 4] / 255;
}
}
this.datasetImages = new Float32Array(datasetBytesBuffer);
resolve();
};
img.src = MNIST_IMAGES_SPRITE_PATH;
});
const labelsRequest = fetch(MNIST_LABELS_PATH);
const [imgResponse, labelsResponse] =
await Promise.all([imgRequest, labelsRequest]);
this.datasetLabels = new Uint8Array(await labelsResponse.arrayBuffer());
// Slice the the images and labels into train and test sets.
this.trainImages =
this.datasetImages.slice(0, IMAGE_SIZE * NUM_TRAIN_ELEMENTS);
this.testImages = this.datasetImages.slice(IMAGE_SIZE * NUM_TRAIN_ELEMENTS);
this.trainLabels =
this.datasetLabels.slice(0, NUM_CLASSES * NUM_TRAIN_ELEMENTS);
this.testLabels =
this.datasetLabels.slice(NUM_CLASSES * NUM_TRAIN_ELEMENTS);
}
/**
* Get all training data as a data tensor and a labels tensor.
*
* @returns
* xs: The data tensor, of shape `[numTrainExamples, 28, 28, 1]`.
* labels: The one-hot encoded labels tensor, of shape
* `[numTrainExamples, 10]`.
*/
getTrainData() {
const xs = tf.tensor4d(
this.trainImages,
[this.trainImages.length / IMAGE_SIZE, IMAGE_H, IMAGE_W, 1]);
const labels = tf.tensor2d(
this.trainLabels, [this.trainLabels.length / NUM_CLASSES, NUM_CLASSES]);
return {xs, labels};
}
/**
* Get all test data as a data tensor a a labels tensor.
*
* @param {number} numExamples Optional number of examples to get. If not
* provided,
* all test examples will be returned.
* @returns
* xs: The data tensor, of shape `[numTestExamples, 28, 28, 1]`.
* labels: The one-hot encoded labels tensor, of shape
* `[numTestExamples, 10]`.
*/
getTestData(numExamples) {
let xs = tf.tensor4d(
this.testImages,
[this.testImages.length / IMAGE_SIZE, IMAGE_H, IMAGE_W, 1]);
let labels = tf.tensor2d(
this.testLabels, [this.testLabels.length / NUM_CLASSES, NUM_CLASSES]);
if (numExamples != null) {
xs = xs.slice([0, 0, 0, 0], [numExamples, IMAGE_H, IMAGE_W, 1]);
labels = labels.slice([0, 0], [numExamples, NUM_CLASSES]);
}
return {xs, labels};
}
}