-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
184 lines (156 loc) · 5.67 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
import torch.nn as nn
import torch.nn.functional as F
import gpytorch
import numpy as np
import random
import matplotlib.pyplot as plt
import seaborn as sns
import tqdm
from config import *
from device import device
sns.set_style('darkgrid')
input_dim = data_generator.input_dim
if train_size is not None:
training_tasks = []
for _ in range(train_size):
task_x, task_y = data_generator(batch=batch, K=K + query_size)
training_tasks.append((task_x, task_y))
def get_training_tasks():
if train_size is None:
while 1:
yield data_generator(batch=batch, K=K + query_size)
else:
while 1:
random.shuffle(training_tasks)
for task_x, task_y in training_tasks:
yield task_x, task_y
training_generator = iter(get_training_tasks())
train_losses = []
validation_nll = []
validation_mse = []
opt = torch.optim.Adam(model.parameters(), lr=learning_rate)
def print_stats():
if train_losses:
print(f'Iteration {itr} loss:', np.mean(train_losses[-val_interval:]))
if validation_nll:
print(f'Iteration {itr} nll:', validation_nll[-1])
print(f'Iteration {itr} mse:', validation_mse[-1])
print()
def nll_metric(pred_y, test_y, out_var=0.1):
err = torch.pow(pred_y - test_y.unsqueeze(0), 2) / out_var
return -torch.logsumexp(-err, dim=0).mean() + np.log(pred_y.size(0))
def mse_metric(pred_y, test_y):
return torch.pow(pred_y.mean(dim=0) - test_y, 2).mean()
def validate_model(val_trials, query_size=1, out_of_range=False, return_se=False):
nlls = []
mses = []
for _ in range(val_trials):
task_x, task_y = data_generator(batch=1, K=K + query_size, validation=True)
train_x, train_y = task_x[0, :K], task_y[0, :K]
test_x, test_y = task_x[0, -query_size:], task_y[0, -query_size:]
pred_y = model(train_x, train_y, test_x, samples=val_samples)
nlls.append(nll_metric(pred_y, test_y).item())
mses.append(mse_metric(pred_y, test_y).item())
if return_se:
return np.mean(nlls), np.mean(mses), np.std(nlls) / np.sqrt(val_trials), np.std(mses) / np.sqrt(val_trials)
return np.mean(nlls), np.mean(mses)
# Example validation task
task_x, task_y = data_generator(batch=1, K=K + query_size + 50000)
train_x, train_y = task_x[0, :K], task_y[0, :K]
test_x, test_y = task_x[0, K:K+query_size], task_y[0, K:K+query_size]
plot_x, plot_y = task_x[0, K+query_size:], task_y[0, K+query_size:]
print('train_x:', train_x.tolist())
print('train_y:', train_y.tolist())
print('test_x:', test_x.tolist())
print('test_y:', test_y.tolist())
print()
pred_y = model(train_x, train_y, test_x, samples=250)
print('mu_test_y:', pred_y.mean(dim=0).tolist())
print('sigma_test_y:', pred_y.std(dim=0).tolist())
print()
nll = nll_metric(pred_y, test_y)
mse = mse_metric(pred_y, test_y)
print('nll:', nll.item())
print('mse:', mse.item())
test_x_ = torch.arange(
task_x.min() - 1., task_x.max() + 1., 1e-1, device=device
)[:, None].expand(-1, train_x.size(1))
pred_y_ = model(train_x, train_y, test_x_, samples=50)
pred_mu = pred_y_.mean(dim=0)
pred_sigma = pred_y_.std(dim=0)
plt.figure()
plt.hist(pred_y[..., 0].cpu().numpy(), bins=50)
plt.show()
plt.figure(dpi=150)
plt.scatter(train_x[:, 0].cpu().numpy(), train_y.cpu().numpy(), s=10, color='blue', label='training', zorder=3)
plt.scatter(plot_x.cpu().numpy(), plot_y.cpu().numpy(), s=2, color='limegreen', label='actual', zorder=1)
plt.plot(test_x_[:, 0].cpu().numpy(), pred_mu.cpu().numpy(), color='orange', label='prediction', zorder=2)
plt.fill_between(
test_x_[:, 0].cpu().numpy(),
(pred_mu - pred_sigma).cpu().numpy(),
(pred_mu + pred_sigma).cpu().numpy(),
alpha=0.2,
color='orange',
)
plt.scatter(test_x[:, 0].tolist(), test_y.tolist(), s=10, color='red', label='testing', zorder=4)
plt.ylabel('$y$')
plt.xlabel('$x$')
plt.legend()
plt.show()
for _ in tqdm.trange(10000):
task_x, task_y = next(training_generator)
if val_interval and itr % val_interval == 0:
nll, mse = validate_model(val_trials, query_size=query_size)
validation_nll.append(nll)
validation_mse.append(mse)
print_stats()
loss = model.loss(task_x, task_y)
train_losses.append(loss.item())
opt.zero_grad()
loss.backward()
opt.step()
itr += 1
def smooth(data, kernel, maxnorm=np.inf):
return nn.functional.conv1d(
torch.tensor(data)[None, None, :].float().clamp(min=-maxnorm, max=maxnorm),
torch.ones(kernel)[None, None, :] / kernel,
).flatten().numpy()
results = {}
def cache_results(name):
results[name] = (train_losses, validation_nll, validation_mse)
plt.figure(dpi=100)
plt.plot(smooth(train_losses, 1), linewidth=0.3)
plt.title('Training Loss')
plt.xlabel('Iteration')
plt.ylabel('Training Loss')
plt.show()
plt.figure(dpi=100)
plt.plot(smooth(validation_nll, 1), linewidth=0.8)
plt.title('Validation NLL')
plt.xlabel('Iteration')
plt.ylabel('NLL')
plt.show()
plt.figure(dpi=100)
plt.plot(smooth(validation_mse, 1), linewidth=0.8)
plt.title('Validation MSE')
plt.xlabel('Iteration')
plt.ylabel('MSE')
plt.show()
plt.figure(dpi=100)
start_iter = 5
for k, (_, nlls, mses) in results.items():
plt.plot(np.arange(start_iter, len(nlls)), nlls[start_iter:], label=k)
plt.ylabel('NLL')
plt.xlabel('Iteration')
plt.legend()
plt.show()
plt.figure(dpi=100)
for k, (_, nlls, mses) in results.items():
plt.plot(np.arange(start_iter, len(mses)), mses[start_iter:], label=k)
plt.ylabel('MSE')
plt.xlabel('Iteration')
plt.legend()
plt.show()
nll_mean, mse_mean, nll_se, mse_se = validate_model(val_trials=2000, query_size=query_size, out_of_range=False, return_se=True)
print(dict(nll_mean=nll_mean, nll_se=nll_se, mse_mean=mse_mean, mse_se=mse_se))