forked from kentonl/e2e-coref
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworker.py
70 lines (56 loc) · 2.38 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/env python
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import time
import tensorflow as tf
import coref_model as cm
import util
if __name__ == "__main__":
config = util.initialize_from_env()
task_index = int(os.environ["TASK"])
report_frequency = config["report_frequency"]
cluster_config = config["cluster"]
util.set_gpus(cluster_config["gpus"][task_index])
cluster = tf.train.ClusterSpec(cluster_config["addresses"])
server = tf.train.Server(cluster,
job_name="worker",
task_index=task_index)
# Assigns ops to the local worker by default.
with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % task_index, cluster=cluster)):
model = cm.CorefModel(config)
saver = tf.train.Saver()
init_op = tf.global_variables_initializer()
log_dir = config["log_dir"]
writer = tf.summary.FileWriter(os.path.join(log_dir, "w{}".format(task_index)), flush_secs=20)
is_chief = (task_index == 0)
# Create a "supervisor", which oversees the training process.
sv = tf.train.Supervisor(is_chief=is_chief,
logdir=log_dir,
init_op=init_op,
saver=saver,
global_step=model.global_step,
save_model_secs=120)
# The supervisor takes care of session initialization, restoring from
# a checkpoint, and closing when done or an error occurs.
with sv.managed_session(server.target) as session:
model.start_enqueue_thread(session)
accumulated_loss = 0.0
initial_time = time.time()
while not sv.should_stop():
tf_loss, tf_global_step, _ = session.run([model.loss, model.global_step, model.train_op])
accumulated_loss += tf_loss
if tf_global_step % report_frequency == 0:
total_time = time.time() - initial_time
steps_per_second = tf_global_step / total_time
average_loss = accumulated_loss / report_frequency
print("[{}] loss={:.2f}, steps/s={:.2f}".format(tf_global_step, tf_loss, steps_per_second))
accumulated_loss = 0.0
writer.add_summary(util.make_summary({
"Train Loss": average_loss,
"Steps per second": steps_per_second
}))
# Ask for all the services to stop.
sv.stop()