forked from keybase/triplesec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
580 lines (488 loc) · 28.5 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
<!DOCTYPE html>
<html lang="en">
<head>
<title>TripleSec - Symmetric Encryption in the Browser combining AES, Salsa20, and Twofish</title>
<meta charset="utf-8">
<META HTTP-EQUIV="CACHE-CONTROL" CONTENT="NO-CACHE">
<link type ="text/css" rel="stylesheet" href="site/css/bootstrap.min.css">
<link type ="text/css" rel="stylesheet" href="site/css/site.css">
<link type ="text/css" rel="stylesheet" href="https://fonts.googleapis.com/css?family=Montserrat+Alternates:400,700">
<script type ="text/javascript" src="rel/triplesec-3.0.0-min.js"></script>
<script type ="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script>
<script type ="text/javascript" src="site/js/bootstrap.min.js"></script>
<script type ="text/javascript" src="site/js/site.js"></script>
</head>
<body>
<div class="container">
<div class="row outer-grid">
<div class="col-xs-3 col-md-2">
<img src="site/img/logo.png" class="img-responsive">
</div><!-- /.outer-grid's 1st column -->
<div class="col-xs-9 col-md-10">
<div class="brand">
TripleSec
<img class="code-logo" src="site/img/python-logo.png">
<img class="code-logo" src="site/img/node-logo.png">
<img class="code-logo" src="site/img/js-logo.png">
</div>
<div class="row">
<div class="col-sm-8 intro">
<p class="lead">
<b>Big News Dec. 12, 2013 - TripleSec for Python!</b>
<br />
Versions 2.6, 2.7, and 3.3+ supported.
</p>
<p>
<b>TripleSec</b> is a simple to use, open-source triple-paranoid symmetric encryption library for Python,
Node.js, and even the browser. It encrypts data with
<a href="http://en.wikipedia.org/wiki/Salsa20" class="salsa20">Salsa 20</a>,
<a href="http://en.wikipedia.org/wiki/Advanced_Encryption_Standard" class="aes">AES</a>,
and <a href="http://en.wikipedia.org/wiki/Twofish" class="twofish">Twofish</a>,
so that a compromise of one or two of the ciphers will not expose the secret.
</p>
<p>
Of course, encryption is only part of the story. TripleSec also: derives keys with
<a href="http://www.tarsnap.com/scrypt.html">scrypt</a> to defend
against password-cracking and rainbow tables; authenticates
with <a href="http://en.wikipedia.org/wiki/HMAC">HMAC</a> to protect against
adaptive chosen-ciphertext attacks; and in the JavaScript version supplements the native entropy sources
for fear they are weak.
</p>
</div>
</div>
<!-- /.row -->
<div class="demo">
<h3>In-Browser Magical Demo</h3>
<div class="well">
<form class="form-horizontal" role="form">
<div class="form-group">
<div class="col-sm-7">
<textarea class="form-control" rows="5" placeholder="input" id='demo-input-data'></textarea>
</div>
<div class="col-sm-5">
<div class="row">
<div class="col-sm-8">
<input type="text" class="form-control" placeholder="key (password)" id='demo-input-key'>
<div id="progress-summary">
</div>
</div>
<div class="col-sm-4">
<div class="btn-group-vertical">
<button class="btn btn-encrypt btn-default" type="button" disabled="true">Encrypt</button>
<button class="btn btn-decrypt btn-default" type="button" disabled="true">Decrypt</button>
</div>
</div>
</div><!-- /.row -->
</div>
</div>
</form>
<div class="encryption-output" style="display:none;">
<h5>Output</h5>
<textarea class="output-code form-control" id="demo-output-data"></textarea>
</div>
</div>
</div>
<!-- /.demo -->
<div class="installation subsection">
<h3>Installation</h3>
<p>
Let TripleSec into your life, today.
</p>
<div class="row install-row">
<div class="install-col col-xs-4">
<img src="site/img/node-logo.png">
<p><code>npm install triplesec</code></p>
<p><a href="https://github.com/keybase/triplesec">source on github</a></p>
</div>
<div class="install-col col-xs-4">
<img src="site/img/python-logo.png">
<p><code>pip install TripleSec</code></p>
<p><a href="https://github.com/keybase/python-triplesec">source and usage notes on github</a></p>
</div>
<div class="install-col col-xs-4">
<img src="site/img/js-logo.png">
<p>
<code><a href="rel/triplesec-3.0.0-min.js">triplesec.js (version 3.0.0)</a></code>
</p>
</div>
</div>
</div>
<div class="how-to-use subsection">
<h3>How to Use It</h3>
<p>
Encryption is performed by the <code>encrypt</code> function. In JavaScript, it periodically yields
control to not lock up your CPU, and finally it
calls back with <code>(err, buffer)</code>.
</p>
<!--
SAMPLE CODE PANED SECTION
-->
<ul class="code-nav nav nav-pills pull-right">
<li class="pull-right"><a href="#encrypt-coffeescript" data-toggle="tab">CoffeeScript</a></li>
<li class="pull-right active"><a href="#encrypt-javascript" data-toggle="tab">JavaScript</a></li>
<li class="pull-right"><a href="#encrypt-python" data-toggle="tab">Python</a></li>
</ul>
<div class="tab-content">
<div class="tab-pane active" id="encrypt-javascript">
<pre>triplesec.encrypt ({
data: new triplesec.Buffer('Pssst. I believe I love you.'),
key: new triplesec.Buffer('top-secret-pw'),
progress_hook: function (obj) { /* ... */ }
}, function(err, buff) {
if (! err) {
var ciphertext = buff.toString('hex');
}
});</pre>
</div><!-- /.tab-pane -->
<div class="tab-pane" id="encrypt-coffeescript">
<pre>triplesec.encrypt
data: new triplesec.Buffer 'Pssst. I believe I love you.'
key: new triplesec.Buffer 'top-secret-pw'
progress_hook: ({what, i, total}) -> # ...
, (err, buff) ->
ciphertext = buff.toString 'hex' unless err</pre>
</div><!-- /.tab-pane -->
<div class="tab-pane" id="encrypt-python">
<pre>import triplesec
import binascii
enc = triplesec.encrypt(b"Pssst. I believe I love you.", b'top-secret-pw')
# optional hex conversion
ciphertext = binascii.hexlify(enc)</pre>
</div><!-- /.tab-pane -->
</div><!-- /.tab-content -->
<!--
END PANED SECTION
-->
<p>
TripleSec's <code>decrypt</code> is painless.
</p>
<!--
SAMPLE CODE PANED SECTION
-->
<ul class="code-nav nav nav-pills pull-right">
<li class="pull-right"><a href="#decrypt-coffeescript" data-toggle="tab">CoffeeScript</a></li>
<li class="pull-right active"><a href="#decrypt-javascript" data-toggle="tab">JavaScript</a></li>
<li class="pull-right"><a href="#decrypt-python" data-toggle="tab">Python</a></li>
</ul>
<div class="tab-content">
<div class="tab-pane active" id="decrypt-javascript">
<pre>triplesec.decrypt ({
data: new triplesec.Buffer(ciphertext, "hex"),
key: new triplesec.Buffer('top-secret-pw'),
progress_hook: function (obj) { /* ... */ }
}, function (err, buff) {
if (! err) {
console.log(buff.toString());
}
});
var plaintext = buff.toString();</pre>
</div><!-- /.tab-pane -->
<div class="tab-pane" id="decrypt-coffeescript">
<pre>triplesec.decrypt
data: new triplesec.Buffer ciphertext, 'hex'
key: new triplesec.Buffer 'top-secret-pw'
progress_hook: ({what, i, total}) -> # ...
, (err, buff) ->
console.log buff.toString() unless err</pre>
</div><!-- /.tab-pane -->
<div class="tab-pane" id="decrypt-python">
<pre># next line necessary if coming from hex
enc = binascii.unhexlify(ciphertext)
plaintext = triplesec.decrypt(enc, b'top-secret-pw').decode()</pre>
</div><!-- /.tab-pane -->
</div><!-- /.tab-content -->
</div><!-- /.how-to-use -->
<div class="command-line subsection">
<h3>Command Line</h3>
<p>
If you <code>pip install TripleSec</code> to get the python
version of TripleSec, you'll be pleasantly surprised to discover
the <code>triplesec</code> command line program. For usage info,
run it without any arguments. Or read the <a href="https://github.com/keybase/python-triplesec">python-triplesec</a>
page on github.
</p>
</div>
<div class="anatomy subsection">
<h3>Anatomy of Output</h3>
<p>
Output is the xor of 4 values, shown as rows below. The columns in the diagram are
aligned. For more information, read on.
</p>
<img src="site/img/anatomy.gif" width="600" height="233">
</div>
<div class="design subsection">
<h3>Algorithm Design</h3>
<p>The TripleSec library encrypts data in four steps:
<ol>
<li>
<b>Key derivation.</b> Given a user-provided password, and a
random salt value, generate three separate secret keys, one
for each cipher (see Step 3), and two final keys for
signing the ciphertext (see Step 4). This "key stretching" is done via
standard <a href="http://www.tarsnap.com/scrypt.html">scrypt</a>,
with parameters <em>N</em>=2<sup>15</sup>,
<em>r</em>=8, <em>p</em>=1, and output length of 192 bytes.
The output of this step is five seperate keys,
used below.
</li>
<li>
<b>Initial value (IV) generation.</b> A random number generator is queried
to produce an initial for each of the three ciphers: a 192-bit
IV for Salsa20; a 128-bit IV for Twofish; and a 128-bit
IV for AES.
</li>
<li>
<b>Cascading encryption.</b> Each of the ciphers runs with the keys generated
in Step 1, and the IVs generated in Step 2.
<ol>
<li>
<p><b>Salsa20.</b> The innermost cipher is a Salsa20 variant called
<a href="http://cr.yp.to/papers.html#xsalsa" class="salsa20">XSalsa20</a>.
Like Salsa20, XSalsa20 is a stream
cipher, meaning it can encrypt input texts of arbitrary length without a
a block cipher mode of operation. XSalsa20 takes a 192-bit nonce
rather than Salsa20's 64-bit nonce, but is provably as secure.
Given a key, and an IV, XSalsa20 generates a random pad,
which is then XOR'ed with the input message. This step of the algorithm
outputs the concatenation of the IV and the result of the XOR operation.
</li>
<li><b>Twofish-CTR.</b> The output of the previous step
(call it <i>C<sub>1</sub></i>) is the input
of this step, which uses
<a href="http://en.wikipedia.org/wiki/Twofish" class="twofish">Twofish</a>
running in <a href="http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_.28CTR.29">CTR</a> mode.
Let <i>R<sub>2</sub></i> be the the IV generated for Twofish in Step 2.
Twofish-CTR works by encrypting <i>R<sub>2</sub></i>, <i>R<sub>2</sub>+1</i>, <i>R<sub>2</sub>+2</i>,...
with Twofish, and concatenating the result to yield a pad the size
of <i>C<sub>1</sub></i>. Call this pad <i>P<sub>2</sub></i> .
Output (<i>R<sub>2</sub></i> || (<i>P<sub>2</sub></i> ⊕ <i>C<sub>1</sub></i>)),
where "||" denotes concatenation, and "⊕" denotes XOR.
</li>
<li><b>AES-256-CTR.</b> In the final encryption step, apply AES-256 running
in CTR mode to the output of the Twofish-CTR step. As above,
first XOR the output of the previous step with the pad output
by AES-256-CTR. Then prepend the IV used.
</li>
</ol>
</li>
<li>
<b>HMAC (or "sign") the ciphertext.</b> Finally, TripleSec "signs" the ciphertext
to ensure that no adversary tampers with it. The data to be signed
is everything generated to date: a small header that encapsulates the version
of the algorithm (now at <code>3</code>); the salt used in key derivation; and
the output of the AES stage of the cascading encryption above. TripleSec "macs" with a <b>concatenation</b> of two HMACs:
HMAC-SHA-512, and HMAC-SHA3, each run with a seperate key.
The final output is a concatenation of:
the header; the salt; the signature; and the outermost ciphertext.
</li>
</ol>
</p>
<p>
Though this is not the exact composition suggested by Schneier in
<i>Applied Cryptography</i> (Section 15.8 in the Second Edition), it is
close. TripleSec never uses the output of one block cipher as input into the next,
which theoretically might allow a crack of one cipher to be used to crack
another. Rather, by merit of CTR mode, the three ciphers run on statistically
independent IVs, so a crack of one will not spread up or down the chain.
The TripleSec technique takes one futher step not suggested by Schneier,
which is to protect the inner IVs with the outer encryption algorithms, and only
exposing the outermost IV in the clear. Though we can't prove this makes
the scheme more secure, it seems like a reasonable idea: why reveal cipher
inputs if we don't have to? Finally, this algorithm has the added advantage
that the output ciphertext only increases by a constant additive term (i.e.,
the lengths of the header, the salt, the HMAC and the three IVs). Schneier's
technique inflates ciphertexts by a factor N, where N is the number of
independent ciphers used.
</p>
<p>
Similarly, TripleSec protects against a break in HMAC-SHA-512 by always
combining it with an HMAC based on <a href="http://keccak.noekeon.org/">Keccak hash algorithm</a> (soon to become the <a href="http://en.wikipedia.org/wiki/SHA-3">SHA-3</a> standard).
TripleSec concatenates the
two results to preserve collision-resistance. Unlike the suspect
compositions in TLS and SSH, this simple composition doesn't require
either SHA-512 or SHA-3 to be strongly collision-resistant; rather,
just weakly collision-resistant in line with the
<a href="http://cseweb.ucsd.edu/~mihir/papers/kmd5.pdf">original construction</a>. See <a href="http://tuprints.ulb.tu-darmstadt.de/2094/1/thesis.lehmann.pdf">Anja Lehmann's</a> dissertation
for more details on combinations of hashes.
</p>
</div><!-- /.design -->
<div class="questions subsection">
<h3>Anticipated Questions</h3>
<div class="question">
<h5>I can understand double encryption, but triple encryption is madness!</h5>
<p class="answer">
User data uploaded to a remote cloud-hosted server is nearly impossible to delete,
so any encryption scheme has to be future-proof. The amount of time
spent encrypting reasonably-sized plaintexts pales in comparison to
(1) <em>scrypt</em>, which is intentionally slow; and (2) how long it will sit on the server.
Why not go the extra mile?
</p>
<h5>What's triplesec.Buffer?</h5>
<p class="answer">
It is a wrapper around either Node.js's Buffer or a browser equivalent. When you generate
encrypted data, you can use the output buffer however you like. In our above examples, we converted
to and from hex strings.
</p>
<h5>How does TripleSec generate randomness/entropy? Can I provide my own?</h5>
<p class="answer">
TripleSec first derives a random seed from a variety of sources:
from <code>window.crypto.getRandomValues</code> in the browser; from <code>crypto.rng</code> in Node.js;
from the millisecond field of your system time; and finally, from <a href="https://github.com/keybase/more-entropy">more-entropy</a>, which counts how many floating-point-heavy computations can be done in a set amount of time.
This data is then stirred together and becomes the seed for <a href="http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf">HMAC_DRBG</a>, whose HMAC is the XOR of HMAC-SHA-512 and HMAC-SHA3.
</p>
<p class="answer">
You may alternatively provide your own random number generator for encryption. Pass an <code>rng</code> function
along with your other data. This function should take two
arguments: the number of bytes needed,
and a callback that you fire with a <code>triplesec.WordArray</code>
containing the random data. You can create a <code>WordArray</code>
from a <code>triplesec.Buffer</code> by simply calling <code>WordArray.from_buffer(buffer)</code>.
</p>
<h5>How are passphrases salted?</h5>
<p class="answer">
<em>scrypt</em> takes as input a salt in addition to a secret passphrase,
to prevent an adversary from cracking many TripleSec-encrypted ciphtertexts
in parallel. TripleSec salts passphrases with a
random 16-byte sequence that's included with the ciphertext. By
default, TripleSec's <code>triplesec.Encryptor</code> object
uses the same salt until you call <code>triplesec.Encryptor.resalt</code>.
The advantage of salt reuse is that it's faster, since it avoids the intentionally
slow <em>scrypt</em> step. On the other hand, an adversary can tell
if two different ciphertexts were encrypted in the same session if
the salt is not reset.
</p>
<h5>Can I encrypt files with it, in the browser?</h5>
<p class="answer">
Yes, using HTML5 features you can access file data without uploading it to a server.
We're also likely to add an additional interface to the encrypt and decrypt functions, where you provide a data <i>function</i> instead of a single Buffer,
for large data performance. TripleSec was planned with this feature in mind, and it'll be easy to use.
</p>
<p class="answer">
If you implement a file-hosting service using TripleSec, let us know, and we'll link to it in the "Who's Using It" section below.
</p>
<h5>Why isn't library X good enough (for X in Clipperz, Forge, SJCL, CryptoJS, etc.)?</h5>
<p class="answer">
There are lots of great JS Crypto libraries out there, and we've borrowed from some to build TripleSec.
But combining cryptographic primitives to achieve
<a href="http://en.wikipedia.org/wiki/Ciphertext_indistinguishability">IND-CCA2</a> security involves many fussy
decisions and much avoidance of implementation pitfalls. We want all to have access to higher-level primitives that can
be applied with little thought. Hence TripleSec!
</p>
<h5>Is this provably secure?</h5>
<p class="answer">
We don't have any exact proof of security for a cascade of block ciphers in CTR mode.
But we're pretty sure TripleSec's encryption can only be broken if all three algorithms are broken.
We furthmore think that TripleSec is non-malleable (and hence IND-CCA2 secure)
due to the HMAC step. Let us know if there's a simple proof (or a citation) that we missed.
</p>
<h5>If the input message size is <i>n</i>, how big is the ciphertext?</h5>
<p class="answer">
<i>n</i> + 208. The additive term is broken down as:
<ul>
<li>8 bytes for the header (which is <code>[0x1c94d7de, 0x3]</code>).</li>
<li>16 bytes for <em>scrypt</em> salt</i>
<li>64 bytes for the HMAC-SHA512 signature</i>
<li>64 bytes for the HMAC-SHA3 signature</i>
<li>16 bytes for AES-256 IV</i>
<li>16 bytes for Twofish IV</i>
<li>24 bytes for Salsa20 IV</i>
</ul>
</p>
<h5>How do I verify the implementation against known test vectors?</h5>
<p class="answer">
In the browser, you can visit our-browser based
<a href="test/browser/index.html">test page</a>.
If you have Node.js on your system, you can clone the
<a href="http://github.com/keybase/triplesec">github repo</a>
and run <code>make test</code>. We've checked all algorithms
against known test vectors, with the exception of the XSalsa20
extension to Salsa20, which doesn't have published test vectors.
For the XSalsa20 extension, we check outputs against the official
<a href="https://code.google.com/p/go/source/browse/?repo=crypto">Go Language Crypto library</a>. We still check the underlying Salsa20 core against published test vectors.
</p>
<h5>I read someplace that it's impossible to write real crypto in
JavaScript.</h5>
<p class="answer">
There are well-read
articles on this topic, but we don't agree
with a lot of the rhetoric. Of course you should deliver your Crypto
libraries over TLS, and nowadays, that's accepted and common.
And maybe JavaScript isn't the most convenient language to
write Crypto code in, but it still can express all the necessary primitives.
Browsers have good CSPRNGs now,
and even if you don't trust Apple and/or Linux and/or Chrome,
we have some good workarounds (see above). True, one needs to
take care not to overflow 32-bits, but with a robust testing
suite against known test vectors, one can rule out this class
of bugs. Of course one shouldn't allow untrusted libraries to
trample one's trusted primitives, but that's true of any
language (see <code> LD_PRELOAD</code> attacks against
libraries written in C). A shortcoming we encountered
in writing TripleSec is that
JavaScript doesn't offer destructors, so
it's inconvenient to scrub buffers properly.
TripleSec has taken care to do this job manually. If
you spot some unscrubbed buffers, please let us know.
</p>
<p class="answer">We are as worried as anyone else about
XSS attacks, CSRF attacks and the ability of third party code to tamper
with vetted Crypto code. But these attacks and the quality of
Crypto libraries are othogonal concerns. Those sites with
high quality JS libraries should feel confident encrypting
data with TripleSec. Those with lots of unvetted third party
JS code won't gain much.
</p>
<h5>Is there a streaming interface?</h5>
<p class="answer">
Not yet, it's in progress. The current interface requires the file to be fully loaded into memory
before it's encrypted, but the current file format is compatible with streaming (with a single seek to
write the HMACs).
</p>
</div>
</div>
<div class="outside-javascript subsection">
<h3>Implementations Outside JavaScript</h3>
<p>
We welcome ports, and we'll list such projects here. The TripleSec checkout
has test vectors which your implementation should match.
</p>
</div>
<div class="whos-using subsection">
<h3>Who's Using it?</h3>
<p>
For starters, we are (<a href="http://www.twitter.com/maxtaco">Max Krohn</a> & <a href="http://www.twitter.com/malgorithms">Chris Coyne</a>), co-founders of OkCupid. We're working on an unrelated site
now, and TripleSec will be used to encrypt our users' keys.
</p>
<p>
If you use TripleSec for something public, please contact us. We'll mention you here.
</p>
<p>
Here are some ideas, in case you're feeling ambitious:
</p>
<ul>
<li>a TripleSec browser extension for highlighting and encrypting/decrypting text on any page</li>
<li>diary/journal</li>
<li>key storage</li>
<li>password manager</li>
<li>Bitcoin wallet</li>
</ul>
</div>
<div class="whos-using subsection">
<h3>Can I help?</h3>
<p>
Please! Above all else, we encourage review of both our algorithm and <a href="http://github.com/keybase/triplesec">the source code</a>.
</p>
</div>
<div class="reach-us subsection">
<h3>How do I reach you?</h3>
<p>
Our email addresses are right here. Please enter the password <code>peppermint patty</code> in the demo box,
and this as the ciphertext:
</p>
<pre>1c94d7de000000032b2d6b9e9de7821edce4830ac7132b41a7c762218ec84f4c965bde7c327b31eace1b9b46fc3fdadcf7ac4ce39df871675b570a8cabdfdb7ae62fe0fc04bd5859dd430d530bbf8ba6083d070f5a9e6ed6c76c4d6dd61c810036c750f4f7a9c350211b4d0b810f10cb36429508ef42a4400c5461af1f5f3b207ceb206098d7e1d0081dd4135ce6f6063000b4530ad4067971059b300cec74b73570932004d92a6cb97e67d68f3c73862afa2b16b31ddae020cc66ae45ad0c95464b3ffd0d422c826d6817c7dc0a0c7d18b3ff992c0efb3a0448e053304a7d6e3abe465349ccb1a6183f790c412803c2e75d8773311e553a7ec7f3704dc19c6c4c1db21445d8bd519b7e4be49f63d7fefeee0dae40e89def3b9367d4b746f930142ee818e977d0d975679ebd8efda6c16fc34ec876090f169ced384d9bf2d64ae447eae6c47f86b7fc79b25c</pre>
</div>
</div><!-- /.outer-grid's 2nd column -->
</div><!-- /.outer-grid -->
</div><!-- /.container -->
</body>
</html>