-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
226 lines (179 loc) · 7.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers.advanced_activations import LeakyReLU, PReLU
from keras.optimizers import SGD, RMSprop, Adagrad
from keras.layers import Dropout, Flatten, Dense, Convolution2D, LSTM, Bidirectional, Activation, TimeDistributed, GlobalAveragePooling1D, Merge, GRU
from keras import applications
from keras.layers.normalization import BatchNormalization
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn import random_projection
from keras.callbacks import TensorBoard, EarlyStopping, ModelCheckpoint
# dimensions of our images.
#img_width, img_height = 224, 224
# fix random seed for reproducibility
np.random.seed(1200)
#train_data_dir = '/input/data/images/train'
#validation_data_dir = '/input/data/images/validation'
nb_train_samples = 14280
nb_validation_samples = 6120
instance_flag=0 #0 for loading data from Local, 1 for FloydHub instance
#MAIN
nb_train_samples = 14280
nb_validation_samples = 6120
#lstm_num_timesteps=10 #How many timesteps of features are being fed per sample of a batch.
batch_size=10 #Samples per batch.
timesteps=6 #Timesteps per sample
#features_size=2048
global start
global starter
start=1
#Define Generator
global trainbag, validationbag
train_index_pointer = list(np.linspace(1,nb_train_samples-1, nb_train_samples, dtype=np.int64))
validation_index_pointer = list(np.linspace(1,nb_validation_samples-1, nb_validation_samples, dtype=np.int64))
trainbag=len(train_index_pointer)
validationbag=len(validation_index_pointer)
#Define Smooth L1 Loss
def l1_smooth_loss(y_true, y_pred):
abs_loss = tf.abs(y_true - y_pred)
sq_loss = 0.5 * (y_true - y_pred)**2
l1_loss = tf.where(tf.less(abs_loss, 1.0), sq_loss, abs_loss - 0.5)
return tf.reduce_sum(l1_loss, -1)
def generator(features, labels, batch_size, timesteps, flag=0):
count=0
#print('Generator Active')
batch_features=np.empty((0,timesteps, features_size))
batch_labels=np.empty((1,0))
while True:
if flag == 0 :
batch_size=10
#trainbag=len(train_index_pointer)
#if trainbag<timesteps:
#print("Out of Novel Train Data")
#break
#else:
#index = train_index_pointer.pop(np.random.randint(1,trainbag))
index = np.random.randint(1,nb_train_samples-1, size=1, dtype=np.int64)
#print("Train Dataset Size", trainbag)
else:
batch_size=1
#validationbag=len(validation_index_pointer)
#if validationbag<timesteps:
#print("Out of Validation Data")
#break
#else:
#index = validation_index_pointer.pop(np.random.randint(1,validationbag))
index = np.random.randint(1,nb_validation_samples-1, size=1, dtype=np.int64)
#print("Validation Dataset Size", validationbag)
#int(index, flag)
dataX = features[index,]
dataY = labels[index,]
#Create One sample of (timesteps, features_size)
for j in range(1,timesteps):
pointer = index-j
x = features[pointer,]
y = labels[pointer,]
dataX = np.vstack((dataX,x))
dataY= np.vstack((dataY,y))
"""
if flag==0:
train_index_pointer=temp
else:
validation_index_pointer=temp """
dataY = np.mean(dataY, axis=0)
dataX=np.expand_dims(dataX, axis=0)
dataY=np.expand_dims(dataY, axis=0)
#Stack samples to create batch
batch_features = np.vstack((batch_features,dataX))
batch_labels = np.column_stack((batch_labels,dataY))
count+=1
if count == batch_size:
count=0
dataX=[]
dataY=[]
TrainY = np.transpose(batch_labels, (1, 0))
yield batch_features, TrainY
#Build Model
def buildmodel(summary):
#Define hyperparameters
lr = 0.001
weight_init='glorot_normal'
#Define Model
model=Sequential()
model.add(BatchNormalization(input_shape=(timesteps, features_size)))
model.add(Bidirectional(GRU(32, activation='relu', kernel_initializer=weight_init, recurrent_activation='hard_sigmoid', return_sequences=True)))
model.add(Bidirectional(GRU(128, activation='relu', kernel_initializer=weight_init, recurrent_activation='hard_sigmoid', return_sequences=False)))
model.add(Dense(units=128, init=weight_init, bias=True))
model.add(LeakyReLU(alpha=0.3))
model.add(BatchNormalization())
model.add(Dense(units=64, init=weight_init, bias=True))
model.add(LeakyReLU(alpha=0.3))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(units=32, init=weight_init))
model.add(LeakyReLU(alpha=0.3))
model.add(BatchNormalization())
model.add(Dropout(0.2))
model.add(Dense(16, init=weight_init))
model.add(LeakyReLU(alpha=0.3))
model.add(Dropout(0.2))
model.add(Dense(1, init=weight_init, activation='linear'))
print('Compiling Model...')
#sgd = SGD(lr=lr, decay=1e-6, momentum=0.9, nesterov=True)
optimize=RMSprop(lr)
model.compile(optimizer=optimize,
loss=l1_smooth_loss,
metrics=['mse'])
if summary:
print(model.summary())
return model
#Load Bottleneck Features (Resnet50) & Labels
print('Loading Bottleneck Features Data and Labels...')
if instance_flag==0:
train_data = np.load(open('data/bottleneck_features_train.npy'))
validation_data = np.load(open('data/bottleneck_features_validation.npy'))
labels = np.loadtxt('data/train.txt')
labels.astype(float)
else:
train_data = np.load(open('/input/bottleneck_features_train.npy'))
validation_data = np.load(open('/input/bottleneck_features_validation.npy'))
labels = np.loadtxt('/input/train.txt')
labels.astype(float)
#speeds = scaler.fit_transform(labels)
#speeds.astype(float)
speeds=labels
y_train= speeds[0:nb_train_samples]
y_validation= speeds[nb_train_samples:len(labels)]
x_train=np.reshape(train_data, (nb_train_samples, -1))
x_validation=np.reshape(validation_data, (nb_validation_samples, -1))
#Reduce Dimensions
transformer = random_projection.SparseRandomProjection(eps=0.5)
X_train= transformer.fit_transform(x_train)
features_size=X_train.shape[1]
transformer = random_projection.SparseRandomProjection(features_size)
X_validation=transformer.fit_transform(x_validation)
X_train.astype(float)
X_validation.astype(float)
print('Final Data Shape = [X_train, X_validation, y_train, y_validation]', X_train.shape , X_validation.shape, y_train.shape, y_validation.shape)
print('Building Model...')
model = buildmodel(summary=1)
train_generator = generator(X_train, y_train, batch_size, timesteps, 0)
validation_generator = generator(X_validation, y_validation, batch_size, timesteps, 1)
print('Training...')
earlyStopping= EarlyStopping(monitor='val_loss', patience=10, verbose=1, mode='auto')
tensorboard = TensorBoard(log_dir='./logs', histogram_freq=0,
write_graph=True, write_images=False)
if instance_flag==0:
checkpointer = ModelCheckpoint(filepath="./dashcam_weights.hdf5", verbose=1, save_best_only=True)
else:
checkpointer = ModelCheckpoint(filepath="/output/dashcam_weights.hdf5", verbose=1, save_best_only=True)
training = model.fit_generator(train_generator, steps_per_epoch=20, epochs=20, verbose=1, validation_data=validation_generator, validation_steps=10, callbacks=[tensorboard, earlyStopping, checkpointer])
print('Training Successful - Saving Weights...')
loss_history = training.history["val_loss"]
mse_history = training.history["val_mean_squared_error"]
numpy_loss_history = np.array(loss_history)
numpy_mse_history = np.array(mse_history)
np.savetxt("./loss_history.txt", numpy_loss_history, delimiter=",")
np.savetxt("./mse_history.txt", numpy_mse_history, delimiter=",")