-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdemo.py
39 lines (30 loc) · 1005 Bytes
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import cv2
import numpy as np
import torch
from PWC_src import PWC_Net
from PWC_src import flow_to_image
FLOW_SCALE = 20.0
if __name__ == '__main__':
# Prepare img pair (size need to be a multipler of 64)
im1 = cv2.imread('example/0img0.ppm')
im2 = cv2.imread('example/0img1.ppm')
im1 = torch.from_numpy((im1/255.).astype(np.float32)).permute(2, 0, 1).unsqueeze(0)
im2 = torch.from_numpy((im2/255.).astype(np.float32)).permute(2, 0, 1).unsqueeze(0)
im1_v = im1.cuda()
im2_v = im2.cuda()
# Build model
pwc = PWC_Net(model_path='models/sintel.pytorch')
#pwc = PWC_Net(model_path='models/chairs-things.pytorch')
pwc = pwc.cuda()
pwc.eval()
import time
start = time.time()
flow = FLOW_SCALE*pwc(im1_v, im2_v)
print(time.time()-start)
flow = flow.data.cpu()
flow = flow[0].numpy().transpose((1,2,0))
flow_im = flow_to_image(flow)
# Visualization
import matplotlib.pyplot as plt
plt.imshow(flow_im)
plt.show()