-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathbadnet.py
73 lines (55 loc) · 2.4 KB
/
badnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import torch
import random
from torchvision.utils import save_image
class poison_generator():
def __init__(self, img_size, dataset, poison_rate, path, trigger_mark, trigger_mask, target_class=0, alpha=1.0):
self.img_size = img_size
self.dataset = dataset
self.poison_rate = poison_rate
self.path = path # path to save the dataset
self.target_class = target_class # by default : target_class = 0
self.trigger_mark = trigger_mark
self.trigger_mask = trigger_mask
self.alpha = alpha
# number of images
self.num_img = len(dataset)
def generate_poisoned_training_set(self):
# random sampling
id_set = list(range(0,self.num_img))
random.shuffle(id_set)
num_poison = int(self.num_img * self.poison_rate)
poison_indices = id_set[:num_poison]
poison_indices.sort() # increasing order
print('poison_indicies : ', poison_indices)
img_set = []
label_set = []
pt = 0
for i in range(self.num_img):
img, gt = self.dataset[i]
if pt < num_poison and poison_indices[pt] == i:
gt = self.target_class
img = img + self.alpha * self.trigger_mask * (self.trigger_mark - img)
pt+=1
# Saving raw images as independent files (Deprecated)
# img_file_name = '%d.png' % i
# img_file_path = os.path.join(self.path, img_file_name)
# save_image(img, img_file_path)
# print('[Generate Poisoned Set] Save %s' % img_file_path)
img_set.append(img.unsqueeze(0))
label_set.append(gt)
img_set = torch.cat(img_set, dim=0)
label_set = torch.LongTensor(label_set)
return img_set, poison_indices, label_set
class poison_transform():
def __init__(self, img_size, trigger_mark, trigger_mask, target_class=0, alpha=1.0):
self.img_size = img_size
self.target_class = target_class # by default : target_class = 0
self.trigger_mark = trigger_mark
self.trigger_mask = trigger_mask
self.alpha = alpha
def transform(self, data, labels):
data, labels = data.clone(), labels.clone()
data = data + self.alpha * self.trigger_mask.to(data.device) * (self.trigger_mark.to(data.device) - data)
labels[:] = self.target_class
return data, labels