-
Notifications
You must be signed in to change notification settings - Fork 41
/
submit_rvsc.py
executable file
·90 lines (73 loc) · 3.45 KB
/
submit_rvsc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/env python2.7
import re, sys, os
import shutil, cv2
import numpy as np
from train_rvsc import map_all_contours, read_contour
from fcn_model import fcn_model
from helpers import center_crop, reshape
RVSC_ROOT_PATH = 'RVSC_data'
TEST01_PATH = os.path.join(RVSC_ROOT_PATH, 'Test1Set')
TEST02_PATH = os.path.join(RVSC_ROOT_PATH, 'Test2Set')
TRAINING_PATH = os.path.join(RVSC_ROOT_PATH, 'TrainingSet')
def create_submission(contours, data_path):
if contour_type == 'i':
weights = 'weights/rvsc_i.h5'
elif contour_type == 'o':
weights = 'weights/rvsc_o.h5'
else:
sys.exit('\ncontour type "%s" not recognized\n' % contour_type)
crop_size = 200
images = np.zeros((len(contours), crop_size, crop_size, 1))
for idx, contour in enumerate(contours):
img, _ = read_contour(contour, data_path, return_mask=False)
img = center_crop(img, crop_size=crop_size)
images[idx] = img
input_shape = (crop_size, crop_size, 1)
num_classes = 2
model = fcn_model(input_shape, num_classes, weights=weights)
pred_masks = model.predict(images, batch_size=32, verbose=1)
save_dir = data_path + '_auto_contours'
num = 0
for idx, ctr in enumerate(contours):
img, _ = read_contour(ctr, data_path, return_mask=False)
h, w, d = img.shape
tmp = reshape(pred_masks[idx], to_shape=(h, w, d))
assert img.shape == tmp.shape, 'Shape of prediction does not match'
tmp = np.where(tmp > 0.5, 255, 0).astype('uint8')
tmp2, coords, hierarchy = cv2.findContours(tmp.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
if not coords:
print('No detection: %s' % ctr.ctr_path)
coords = np.ones((1, 1, 1, 2), dtype='int')
if len(coords) > 1:
print('Multiple detections: %s' % ctr.ctr_path)
#cv2.imwrite('multiple_dets/'+contour_type+'{:04d}.png'.format(idx), tmp)
lengths = []
for coord in coords:
lengths.append(len(coord))
coords = [coords[np.argmax(lengths)]]
num += 1
filename = 'P{:s}-{:s}-'.format(ctr.patient_no, ctr.img_no)+contour_type+'contour-auto.txt'
full_path = os.path.join(save_dir, 'P{:s}'.format(ctr.patient_no)+'contours-auto')
if not os.path.exists(full_path):
os.makedirs(full_path)
with open(os.path.join(full_path, filename), 'w') as f:
for coord in coords:
coord = np.squeeze(coord, axis=(1,))
coord = np.append(coord, coord[:1], axis=0)
np.savetxt(f, coord, fmt='%i', delimiter=' ')
print('Num of files with multiple detections: {:d}'.format(num))
if __name__== '__main__':
if len(sys.argv) < 3:
sys.exit('Usage: python %s <i/o> <gpu_id>' % sys.argv[0])
contour_type = sys.argv[1]
os.environ['CUDA_VISIBLE_DEVICES'] = sys.argv[2]
print('Processing Training '+contour_type+' contours...')
train_ctrs = map_all_contours(TRAINING_PATH, contour_type, shuffle=False)
create_submission(train_ctrs, TRAINING_PATH)
print('Processing Test1 '+contour_type+' contours...')
test1_ctrs = map_all_contours(TEST01_PATH, contour_type, shuffle=False)
create_submission(test1_ctrs, TEST01_PATH)
print('Processing Test2 '+contour_type+' contours...')
test2_ctrs = map_all_contours(TEST02_PATH, contour_type, shuffle=False)
create_submission(test2_ctrs, TEST02_PATH)
print('All done.')