-
h(x) $$ \begin{align*}h_\theta(x) =\begin{bmatrix}\theta_0 \hspace{2em} \theta_1 \hspace{2em} ... \hspace{2em} \theta_n\end{bmatrix}\begin{bmatrix}x_0 \newline x_1 \newline \vdots \newline x_n\end{bmatrix}= \theta^T x\end{align*}, x_0^{(i)} = 1 $$
-
Gradient descent equation $$ \begin{align*}& \text{repeat until convergence:} ; \lbrace \newline ; & \theta_j := \theta_j - \alpha \frac{1}{m} \sum\limits_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) \cdot x_j^{(i)} ; & \text{for j := 0...n}\newline \rbrace\end{align*} $$
-
当不同特征的值差距过大$(>10^5)$时,需要特征缩放(Feature Scaling)
$$ x_i := \frac{x_i - \mu_i}{s_i} $$ Where
$\mu_i$ is the average of all the values for feature(i) and$s_i$ is the range of values(max - min), or$s_i$ is the standard deviation. -
Learning Rate In automatic convergence test, declare convergence if
$J(\theta)$ decreases by less than$1-^{-3}$ in one iteration. -
Features and Polynomial Regression 可以将不同的特征值组合来更好的拟合数据,同时因为数据的组合,更加需要特征缩放来加快几何提高精度
-
Normal Equation 正规方程 不需要特征缩放 $$ \theta = (X^TX)^{-1}X^Ty $$
-
Comparation
Gradient Descent | Normal Equation |
---|---|
need to choose |
No need to choose |
Needs many iterations | Don’t need to iterate |
Works well even when n is large ( |
Need to compute |
Slow if n is very large |
-
If
$X^TX$ is noninvertible, the common causes might be having :- Redundant features, where two features are very closely related (i.e. they are linearly dependent)
- Too many features (e.g. m ≤ n). In this case, delete some features or use "regularization" (to be explained in a later lesson).