-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvalidSyncBN.py
212 lines (182 loc) · 7.3 KB
/
validSyncBN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# -*- coding:utf-8 -*-
'''
Program:
sync Batch Normalization in multi GPU
Release:
2019/06/27 ZhangDao First release
'''
import tensorflow as tf
import numpy as np
import os, re
# TF version ls lower/equal with tf.1.12.0
# this code is from [batch_norm.py](https://github.com/tensorpack/tensorpack/blob/master/tensorpack/models/batch_norm.py)
if tuple(map(int, tf.__version__.split('.')[:2])) <= (1, 12):
try:
from tensorflow.contrib.nccl.python.ops.nccl_ops import _validate_and_load_nccl_so
except Exception:
pass
else:
_validate_and_load_nccl_so()
from tensorflow.contrib.nccl.ops import gen_nccl_ops
else:
from tensorflow.python.ops import gen_nccl_ops
from tensorflow.contrib.framework import add_model_variable
def syncBatchNorm(inputs,
axis=-1,
momentum=0.99,
epsilon=0.001,
updates_collections=tf.GraphKeys.UPDATE_OPS,
reuse=None,
variables_collections=None,
training=False,
trainable=True,
name=None,
GPUNumber=1):
'''
this function is from https://github.com/jianlong-yuan/syncbn-tensorflow/blob/master/syncbn.py
'''
shapeList = inputs.get_shape().as_list()
num_outputs = shapeList[axis]
# print (f"num_outputs = {num_outputs}") # 512
axes = [i for i in range(len(shapeList))]
# when the dimension is 1, axes = [], this also run well!
del axes[axis]
# print (f"axes = {axes}") # [0, 1, 2]
if name is None:
name = 'batch_normalization'
with tf.variable_scope(name, reuse=reuse) as scope:
# initializer, gamma and beta is trainable, moving_mean and moving_var is not
gamma = tf.get_variable(name='gamma', shape=[num_outputs], dtype=tf.float32,
initializer=tf.constant_initializer(1.0), trainable=trainable,
collections=variables_collections)
beta = tf.get_variable(name='beta', shape=[num_outputs], dtype=tf.float32,
initializer=tf.constant_initializer(0.0), trainable=trainable,
collections=variables_collections)
moving_mean = tf.get_variable(name='moving_mean', shape=[num_outputs], dtype=tf.float32,
initializer=tf.constant_initializer(0.0), trainable=False,
collections=variables_collections)
moving_var = tf.get_variable(name='moving_variance', shape=[num_outputs], dtype=tf.float32,
initializer=tf.constant_initializer(1.0), trainable=False,
collections=variables_collections)
def branchTrue():
'''
update the batch mean and batch variance
'''
# only one GPU
if GPUNumber == 1:
batch_mean = tf.reduce_mean(inputs, axis=axes, name="batch_mean")
batch_mean_square = tf.reduce_mean(tf.square(inputs), axis=axes)
# multi GPUs
else:
# avarage moving_mean and moving_var in multi GPUs
shared_name = re.sub('tower[0-9]+/', '', tf.get_variable_scope().name)
batch_mean = tf.reduce_mean(inputs, axis=axes)
# Utilize NCCL
batch_mean = gen_nccl_ops.nccl_all_reduce(
input=batch_mean,
reduction='sum',
num_devices=GPUNumber,
shared_name=shared_name + '_NCCL_mean') * (1.0 / GPUNumber)
batch_mean_square = tf.reduce_mean(tf.square(inputs), axis=axes)
batch_mean_square = gen_nccl_ops.nccl_all_reduce(
input=batch_mean_square,
reduction='sum',
num_devices=GPUNumber,
shared_name=shared_name + '_NCCL_mean_square') * (1.0 / GPUNumber)
batch_var = batch_mean_square - tf.square(batch_mean)
outputs = tf.nn.batch_normalization(inputs, batch_mean, batch_var, beta, gamma, epsilon)
return outputs, batch_mean, batch_var
def branchFalse():
'''
the same with moving_mean and moving_var
'''
outputs = tf.nn.batch_normalization(inputs, moving_mean, moving_var, beta, gamma, epsilon)
# use the default tensor, this code will not update moving_mean and moving_var
# for batch_mean+(moving_mean-batch_mean)*momentum = moving_mean
# is batch_mean == moving_mean
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
batch_mean = tf.get_variable("moving_mean")
batch_var = tf.get_variable("moving_variance")
return outputs, batch_mean, batch_var
outputs, batch_mean, batch_var = tf.cond(tf.math.logical_and(training, trainable), branchTrue, branchFalse)
# those code block is executed in every GPUs
# just assign moving_mean and moving_var in GPU:0
if int(outputs.device[-1]) == 0:
update_moving_mean_op = tf.assign(moving_mean, batch_mean+(moving_mean-batch_mean)*momentum)
update_moving_var_op = tf.assign(moving_var, batch_var+(moving_var-batch_var)*momentum)
add_model_variable(moving_mean)
add_model_variable(moving_var)
if updates_collections is None:
with tf.control_dependencies([update_moving_mean_op, update_moving_var_op]):
outputs = tf.identity(outputs)
else:
tf.add_to_collections(updates_collections, update_moving_mean_op)
tf.add_to_collections(updates_collections, update_moving_var_op)
outputs = tf.identity(outputs)
else:
outputs = tf.identity(outputs)
return outputs
def testBNInMultiGPU():
'''
Test Batch Normalization in multi GPU
Args:
None
Returns:
None
'''
'''
compute GPU number and memory
'''
memoryList = list(map(int, os.popen("nvidia-smi -q -d Memory | grep -A4 GPU | grep Total\
| awk '{print $3}'").readlines()))
GPUNumber = len(memoryList)
GPUMemorySize = memoryList[0]
'''
configment of the TensorFlow
'''
config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
config.gpu_options.allocator_type = 'BFC'
memoryLimited = 200 # memory for CRNN to train
config.gpu_options.per_process_gpu_memory_fraction = memoryLimited / GPUMemorySize
'''
network
'''
numberGPU = 2
dimension = [3]
ifTraining = True
with tf.variable_scope(tf.get_variable_scope()):
for itemGPU in range(numberGPU):
with tf.device("/gpu:%d" % itemGPU):
with tf.name_scope("tower_%d" % itemGPU):
x = tf.placeholder(tf.float32, shape=dimension, name='data')
training = tf.placeholder(tf.bool, shape=(), name='training')
locals()['y%s' % itemGPU] = syncBatchNorm(x, momentum=0.9,\
training=training, reuse=tf.AUTO_REUSE, GPUNumber=numberGPU)
tf.get_variable_scope().reuse_variables()
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
# print (update_ops) # [<tf.Tensor 'tower_0/batch_normalization/Assign:0' shape=(3,) dtype=float32_ref>, <tf.Tensor 'tower_0/batch_normalization/Assign_1:0' shape=(3,) dtype=float32_ref>]
# print ([n.name for n in tf.get_default_graph().as_graph_def().node])
'''
train
'''
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
feedDict = {}
fetchList = []
for item in range(numberGPU):
feedDict[tf.get_default_graph().get_tensor_by_name("tower_%s/data:0" % item)]\
= np.ones(dimension)*(item+1)
feedDict[tf.get_default_graph().get_tensor_by_name("tower_%s/training:0" % item)]\
= ifTraining
fetchList.append(locals()['y%s' % item])
fetchList.append(update_ops)
outputTuple = (locals()['outputArray%s' % item] for item in range(numberGPU+1))
outputTuple = sess.run(fetches=fetchList, feed_dict=feedDict)
print (f"outputTuple = {outputTuple}")
print ("\nAfter normalization:")
movingMean = tf.get_default_graph().get_tensor_by_name("batch_normalization/moving_mean:0")
print ("moving mean = %s" % sess.run(movingMean))
movingVariance = tf.get_default_graph().get_tensor_by_name("batch_normalization/moving_variance:0")
print ("moving variance = %s" % sess.run(movingVariance))
if __name__ == "__main__":
testBNInMultiGPU()