-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmitigation_ESConv.py
568 lines (487 loc) · 26.1 KB
/
mitigation_ESConv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
# coding=utf-8
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import os
import shutil
import sys
import argparse
import time
import datetime
import json
from tqdm import tqdm
import logging
import wandb
import torch
from torch import Tensor
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam
from torch.distributed import get_rank
from transformers.optimization import AdamW
from transformers.trainer_utils import set_seed
from inputters import inputters
from utils.building_utils import boolean_string, build_model, deploy_model
from utils.mitigate_utils import MitigationDataLoader, RankingLoss, test_model, eval_model
def mitigate_one_batch(base_model, toker, input_ids=None, attention_mask=None, candidate_ids=None,
normalize=True, score_mode="base", length_penalty=1, require_gold=True, **kwargs):
batch_size = input_ids.size(0)
candidate_num = candidate_ids.size(1)
candidate_mask = candidate_ids != toker.pad_token_id
encoder_outputs = base_model.model.encoder(input_ids=input_ids, attention_mask=attention_mask)
encoder_hidden_states = encoder_outputs[0]
encoder_hidden_states = torch.repeat_interleave(encoder_hidden_states, candidate_num, dim=0)
encoder_outputs.last_hidden_state = encoder_hidden_states
decoder_input_ids = candidate_ids.view(-1, candidate_ids.size(-1))
decoder_attention_mask = candidate_mask.view(-1, candidate_mask.size(-1))
output = base_model(encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask, mitigation=True)
output = output[0] # [bz x cand_num, seq_len, word_dim]
output = output.view(batch_size, -1, output.size(1), output.size(2)) # [bz, cand_num, seq_len, word_dim]
output = output[:, :, :-1] # truncate last token
probs = output[:, 0].contiguous()
# add eos token
candidate_len = torch.sum(candidate_ids.ne(toker.pad_token_id), dim=2, keepdim=True).type_as(candidate_ids)
eos_position = torch.remainder(candidate_len, candidate_ids.size(2))
candidate_ids = candidate_ids.scatter(2, eos_position, toker.eos_token_id)
candidate_ids = candidate_ids[:, :, 1:] # shift right --> labels
gold_ids = candidate_ids[:, 0].contiguous()
# get candidate mask
candidate_mask = candidate_ids != toker.pad_token_id
candidate_ids = candidate_ids.unsqueeze(-1)
# compute lm_loss
masked_lm_loss = F.cross_entropy(probs.view(-1, probs.size(-1)), gold_ids.view(-1), ignore_index=toker.pad_token_id)
ppl_value = torch.exp(masked_lm_loss)
# compute scores
if normalize:
if score_mode == "log":
_output = F.log_softmax(output, dim=3)
else:
_output = F.softmax(output, dim=3)
scores = torch.gather(_output, 3, candidate_ids).squeeze(-1) # [bz, cand_num, seq_len]
else:
scores = torch.gather(output, 3, candidate_ids).squeeze(-1) # [bz, cand_num, seq_len]
candidate_mask = candidate_mask.float()
scores = torch.mul(scores, candidate_mask).sum(-1) \
/ ((candidate_mask.sum(-1) + 1e-8) ** length_penalty) # [bz, cand_num]
if require_gold:
output = {"cand_score": scores[:, 1:], "gold_score": scores[:, 0], "lm_loss": masked_lm_loss, "ppl": ppl_value}
else:
output = {"cand_score": scores, "probs": probs}
return output
def mitigate_base_model(base_model, toker, train_dataloader, args, output_dir, logger=None):
INF = 100000000
CACHE_EMPTY_STEP = 10000
set_seed(args.seed)
step_cnt = 0
all_step_cnt = 0
epoch = 0
# lowest_eval_loss = 20
highest_score = {}
if args.local_rank == -1 or get_rank() == 0:
log_output_dir = os.path.join(output_dir, "log_files")
if not os.path.exists(log_output_dir):
os.mkdir(log_output_dir)
train_logger = open(os.path.join(log_output_dir, "mitigation_train_log.csv"), "a+", buffering=1)
eval_logger = open(os.path.join(log_output_dir, "mitigation_eval_log.csv"), "a+", buffering=1)
print("all_step_cnt\tstep_cnt\tavg_loss\tavg_ranking_loss\tavg_ppl\tn_token_total\tepoch_time",
file=train_logger)
print("all_step_cnt\tstep_cnt\teval_loss\teval_ppl\teval_bleu\teval_rouge", file=eval_logger)
optim_step_num = len(train_dataloader) // (args.train_batch_size * args.accumulate_step) + int(
len(train_dataloader) % (args.train_batch_size * args.accumulate_step) != 0)
epoch_num = args.epoch_num
valid_step = args.valid_step * args.accumulate_step
if epoch_num != None:
optim_step_num = optim_step_num * epoch_num
if args.local_rank != -1:
args.n_gpu = 1
if args.local_rank == -1 or get_rank() == 0:
if args.pbar:
pbar = tqdm(total=optim_step_num, desc=f"Optimizing *{args.config_name}*", mininterval=3, ncols=150)
else:
pbar = None
else:
pbar = None
inputter = inputters[args.inputter_name]()
param_optimizer = list(base_model.named_parameters())
no_decay = ['bias', 'ln', 'LayerNorm.weight'] # no decay for bias and LayerNorm (ln)
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if p.requires_grad and not any(nd in n for nd in no_decay)],
'weight_decay': 0.001},
{'params': [p for n, p in param_optimizer if p.requires_grad and any(nd in n for nd in no_decay)],
'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters)
# monitor the loss of model
wandb.init(config=args, project="Muffin-ESConv", entity="xiaowang-team")
last_update_time = 0
while True:
base_model.train()
(avg_ranking_loss, avg_lm_loss, avg_loss, avg_ppl) = 0.0, 0.0, 0.0, 0.0
train_start_time_epoch = time.time()
for batch in train_dataloader:
# activate new training mode
batch = {k: v.to(args.device) if isinstance(v, Tensor) else v for k, v in batch.items()}
batch.update({"all_step_cnt": all_step_cnt})
batch.update({"epoch": epoch})
batch.update({"warmup_steps": args.warmup_step})
outputs = mitigate_one_batch(base_model, toker, **batch)
# obtain generation loss and ppl
lm_loss = outputs.pop("lm_loss")
ppl = outputs.pop("ppl")
# compute ranking loss
cand_similarity = outputs.pop("cand_score") * args.scale
gold_similarity = outputs.pop("gold_score") * args.scale
if cand_similarity.size(1) == 0:
ranking_loss = 0
else:
ranking_loss = RankingLoss(cand_similarity, batch["candidate_labels"], args.margin)
if args.n_gpu > 1:
ranking_loss = ranking_loss.mean() if ranking_loss != 0 else 0
lm_loss = lm_loss.mean()
ppl = lm_loss.mean()
loss = (args.rank_weight * ranking_loss + args.lm_weight * lm_loss) / args.accumulate_step
avg_loss += loss.item()
avg_lm_loss += lm_loss.item() / args.accumulate_step
avg_ranking_loss += ranking_loss.item() / args.accumulate_step if ranking_loss != 0 else 0
if ppl.item() < INF:
avg_ppl += ppl.item()
if args.fp16:
logger.info("not implemented")
exit()
# with amp.scale_loss(loss, optimizer) as scaled_loss:
# scaled_loss.backward()
else:
loss.backward()
# gradient update
step_cnt += 1
if step_cnt % args.accumulate_step == 0:
# updating
if args.grad_norm > 0:
nn.utils.clip_grad_norm_(base_model.parameters(), args.grad_norm)
all_step_cnt += 1
# adjust learning rate
lr = args.max_lr * min(all_step_cnt ** (-0.5), all_step_cnt * (args.warmup_step ** (-1.5)))
for param_group in optimizer.param_groups:
param_group["lr"] = lr
optimizer.step()
optimizer.zero_grad()
# Print log info to file
if args.local_rank == -1 or get_rank() == 0:
avg_op = lambda x: x / args.accumulate_step
avg_ranking_loss, avg_lm_loss, avg_loss, avg_ppl = avg_op(avg_ranking_loss), avg_op(
avg_lm_loss), avg_op(avg_loss), avg_op(avg_ppl)
epoch_time = time.time() - train_start_time_epoch
if pbar is not None:
pbar_str = ""
for k, v in outputs.items():
if args.n_gpu > 1:
pbar_str += f"{k}: {v.mean().item():.2f} "
else:
pbar_str += f"{k}: {v.item():.2f} "
pbar_str += f"ppl: {avg_ppl:.2f} ranking_loss: {avg_ranking_loss: .3f} lm_loss: {avg_lm_loss: .2f} epoch: {epoch + 1}"
pbar.set_postfix_str(pbar_str)
pbar.update(1)
print(
f"{epoch + 1},{all_step_cnt + 1},{step_cnt + 1},{avg_loss},{avg_ranking_loss},{avg_lm_loss},{avg_ppl},{epoch_time}",
file=train_logger)
wandb.log({"avg_ranking_loss": avg_ranking_loss, "avg_lm_loss": avg_lm_loss, "avg_loss": avg_loss})
avg_ranking_loss, avg_lm_loss, avg_loss, avg_ppl = 0.0, 0.0, 0.0, 0.0
if step_cnt % valid_step == 0:
if args.local_rank == -1 or get_rank() == 0:
# set_seed(0)
eval_dataloader_infer = inputter.infer_dataloader(
infer_input_file=args.eval_input_file,
toker=toker,
**args.infer_dataloader_kwargs
)
eval_dataloader_loss = inputter.valid_dataloader(
toker=toker,
corpus_file=args.eval_input_file,
batch_size=args.eval_batch_size,
**args.dataloader_kwargs
)
eval_loss, eval_ppl, metric_results, metric_result_list, results = eval_model(
base_model, toker, args, eval_dataloader_loss, eval_dataloader_infer
)
# eval_bleu = metric_results["bleu-4"]
# eval_rouge = metric_results["rouge-l"]
print(
f"**Eval (step: {all_step_cnt})** Loss: {eval_loss:.4f}, PPL: {eval_ppl:.4f}")
# f"**Eval (step: {all_step_cnt})** Loss: {eval_loss:.4f}, PPL: {eval_ppl:.4f}, BLEU-4: {eval_bleu:.2f}, ROUGE-L: {eval_rouge:.2f}")
eval_score = eval_ppl
if eval_loss > 5:
logger.info("ppl is greater than 5.")
exit()
last_update_time += 1
if len(highest_score) < args.save_total_limit or eval_score < max(highest_score.keys()):
last_update_time = 0
args.checkpoint_dir = os.path.join(output_dir,
f"mitigate_{args.config_name}_{all_step_cnt}")
highest_score[eval_score] = args.checkpoint_dir
os.makedirs(args.checkpoint_dir, exist_ok=True)
args.load_checkpoint = os.path.join(args.checkpoint_dir, "model.bin")
torch.save(base_model.state_dict(), args.load_checkpoint)
with open(os.path.join(args.checkpoint_dir, "valid_metrics.json"), "w",
encoding="utf-8") as f:
json.dump(metric_results, f, indent=2, ensure_ascii=False, sort_keys=False)
if len(highest_score) > args.save_total_limit:
shutil.rmtree(highest_score[max(highest_score.keys())])
del highest_score[max(highest_score.keys())]
print(
f"{epoch + 1}\t{all_step_cnt}\t{step_cnt}\t{eval_loss}\t{eval_ppl}\t{0}\t{0}",
# f"{epoch + 1}\t{all_step_cnt}\t{step_cnt}\t{eval_loss}\t{eval_ppl}\t{eval_bleu}\t{eval_rouge}",
file=eval_logger)
logger.info("current learning rate: " + str(optimizer.param_groups[0]["lr"]))
wandb.log({"eval_loss": eval_loss, "eval_ppl": eval_ppl})
# wandb.log({"eval_loss": eval_loss, "eval_ppl": eval_ppl, "eval_bleu": eval_bleu, "eval_rouge": eval_rouge})
base_model.train()
if args.epoch_num is None and all_step_cnt >= optim_step_num:
logger.info(f"all_step_cnt {all_step_cnt} is greater than optim_step_num {optim_step_num}")
break
if last_update_time > 10:
logger.info(f"teh model doesn't increase its performance for 10 steps")
break
if (step_cnt + 1) % CACHE_EMPTY_STEP == 0:
torch.cuda.empty_cache()
if args.epoch_num is not None:
epoch += 1
if epoch >= args.epoch_num:
break
elif all_step_cnt >= optim_step_num:
break
elif last_update_time > 10:
break
if args.local_rank == -1 or get_rank() == 0:
if pbar is not None:
pbar.close()
train_logger.close()
eval_logger.close()
def mitigation(args):
init_args_dict = vars(args).copy()
if args.config is not None:
# override argparse defaults by config JSON
opts = json.load(open(args.config))
for k, v in opts.items():
if isinstance(v, str):
# PHILLY ENV special cases
if "PHILLY_JOB_DIRECTORY" in v:
v = v.replace("PHILLY_JOB_DIRECTORY", os.environ["PHILLY_JOB_DIRECTORY"])
elif "PHILLY_LOG_DIRECTORY" in v:
v = v.replace("PHILLY_LOG_DIRECTORY", os.environ["PHILLY_LOG_DIRECTORY"])
setattr(args, k, v)
# command line should override config JSON
argv = sys.argv[1:]
overrides, _ = parser.parse_known_args(argv)
for k, v in vars(overrides).items():
if f"--{k}" in argv:
setattr(args, k, v)
setattr(args, "local_rank", overrides.local_rank)
if args.local_rank == -1:
logger.info("CUDA available? {}".format(str(torch.cuda.is_available())))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
args.device, args.n_gpu = device, n_gpu
else:
# distributed training
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
# Initializes the distributed backend which will take care of
# sychronizing nodes/GPUs
torch.distributed.init_process_group(backend="nccl")
n_gpu = torch.distributed.get_world_size()
args.device, args.n_gpu = device, 1
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.local_rank == -1 or get_rank() == 0:
logger.info("initializing cuda...")
torch.tensor([1.], device=args.device)
if args.local_rank == -1 or get_rank() == 0:
logger.info("Input Argument Information")
args_dict = vars(args)
for a in args_dict:
logger.info("%-28s %s" % (a, args_dict[a]))
#########################################################################
# prepare data set
#########################################################################
names = {
"inputter_name": args.inputter_name,
"config_name": args.config_name,
}
toker = build_model(only_toker=True, local_rank=args.local_rank, **names)
args.dataloader_kwargs = {
"max_input_length": args.max_input_length,
"max_decoder_input_length": args.max_decoder_input_length,
"max_knowledge_len": args.max_knowledge_len,
"label_num": args.label_num,
"only_encode": args.only_encode,
}
args.infer_dataloader_kwargs = {
"max_src_turn": args.max_src_turn,
"max_input_length": args.max_input_length,
"max_decoder_input_length": args.max_decoder_input_length,
"max_knowledge_len": args.max_knowledge_len,
"label_num": args.label_num,
"multi_knl": args.multi_knl,
"only_encode": args.only_encode,
"infer_batch_size": args.infer_batch_size,
}
# inputter = inputters[args.inputter_name]()
# eval_dataloader_infer = inputter.infer_dataloader(
# infer_input_file="DATA/train.txt",
# toker=toker,
# **args.infer_dataloader_kwargs
# )
# processed_data = []
# for batch, posts, references, sample_ids, the_context in eval_dataloader_infer:
# for i in range(len(posts)):
# temp_dict = {
# "sample_ids": sample_ids[i],
# "context": the_context[i],
# "response": references[i]
# }
# processed_data.append(temp_dict)
# with open("train_context.txt", "w") as f:
# for line in processed_data:
# f.write(json.dumps(line) + "\n")
# exit()
mitigation_dataloader = MitigationDataLoader(
max_length=args.max_decoder_input_length,
data_dir=os.path.join(args.checkpoint_dir, "candidates_10_best_model.bin_train"),
toker=toker,
batch_size=args.train_batch_size,
**names
)
#########################################################################
args.load_checkpoint = os.path.join(args.checkpoint_dir, "best_model.bin")
_, base_model = build_model(checkpoint=args.load_checkpoint, local_rank=args.local_rank, **names)
base_model = deploy_model(base_model, args, local_rank=args.local_rank)
output_dir = os.path.join("/".join(args.checkpoint_dir.split("/")[:-1]),
args.checkpoint_dir.split("/")[-1].split(".")[0])
mitigation_model_dir = output_dir + f"_muffin_{datetime.datetime.now().strftime('%Y-%m-%d%H%M%S')}"
assert not os.path.exists(mitigation_model_dir), f'{mitigation_model_dir} has existed'
os.mkdir(mitigation_model_dir)
if args.local_rank == -1 or get_rank() == 0:
os.makedirs(mitigation_model_dir, exist_ok=True)
with open(os.path.join(mitigation_model_dir, "mitigation_args.json"), "w", encoding="utf-8") as f:
json.dump(init_args_dict, f, ensure_ascii=False, indent=2)
with open(os.path.join(mitigation_model_dir, "custom_config.json"), "w", encoding="utf-8") as f:
with open(f"CONFIG/{args.config_name}.json", "r", encoding="utf-8") as ff:
json.dump(json.load(ff), f, ensure_ascii=False, indent=2)
logger_dir = f"DATA/{args.inputter_name}.{args.config_name}"
if not os.path.exists(logger_dir):
os.mkdir(logger_dir)
mitigate_base_model(base_model, toker, mitigation_dataloader, args, mitigation_model_dir, logger)
return mitigation_model_dir
def test_checkpoints(mitigate_model_dir, args):
checkpoint_list = os.listdir(mitigate_model_dir)
checkpoint_list = [file for file in checkpoint_list if file.startswith(f"mitigate_{args.config_name}_")]
inputter = inputters[args.inputter_name]()
args.dataloader_kwargs = {
"max_input_length": args.max_input_length,
"max_decoder_input_length": args.max_decoder_input_length,
"max_knowledge_len": args.max_knowledge_len,
"label_num": args.label_num,
"only_encode": args.only_encode,
}
args.infer_dataloader_kwargs = {
"max_src_turn": args.max_src_turn,
"max_input_length": args.max_input_length,
"max_decoder_input_length": args.max_decoder_input_length,
"max_knowledge_len": args.max_knowledge_len,
"label_num": args.label_num,
"multi_knl": args.multi_knl,
"only_encode": args.only_encode,
"infer_batch_size": args.infer_batch_size,
}
if args.local_rank == -1:
logger.info("CUDA available? {}".format(str(torch.cuda.is_available())))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
args.device, args.n_gpu = device, n_gpu
else:
# distributed training
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
# Initializes the distributed backend which will take care of
# sychronizing nodes/GPUs
torch.distributed.init_process_group(backend="nccl")
n_gpu = torch.distributed.get_world_size()
args.device, args.n_gpu = device, 1
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
names = {
"inputter_name": args.inputter_name,
"config_name": args.config_name,
}
toker = build_model(only_toker=True, local_rank=args.local_rank, **names)
for load_checkpoint_dir in checkpoint_list:
args.checkpoint_dir = os.path.join(mitigate_model_dir, load_checkpoint_dir)
args.load_checkpoint = os.path.join(args.checkpoint_dir, "model.bin")
if not os.path.exists(os.path.join(args.checkpoint_dir, "inference_results")):
_, base_model = build_model(checkpoint=args.load_checkpoint, local_rank=args.local_rank, **names)
base_model = deploy_model(base_model, args, local_rank=args.local_rank)
set_seed(0)
infer_dataloader = inputter.infer_dataloader(args.infer_input_file, toker, **args.infer_dataloader_kwargs)
loss_loader = inputter.valid_dataloader(
corpus_file=args.infer_input_file,
toker=toker,
batch_size=args.infer_batch_size,
**args.infer_dataloader_kwargs
)
test_model(base_model, toker, args, loss_loader, infer_dataloader)
if __name__ == "__main__":
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO)
logger = logging.getLogger(__name__)
#########################################################################
# Prepare Parser
#########################################################################
parser = argparse.ArgumentParser()
# model configuration
parser.add_argument("--config_name", type=str, required=True)
parser.add_argument("--inputter_name", type=str, required=True)
parser.add_argument("--seed", type=int, default=13)
parser.add_argument("--checkpoint_dir", "-c", type=str, required=True)
parser.add_argument("--save_total_limit", type=int, default=3)
# base model data processing --> for testing and candidate sampling
parser.add_argument("--max_src_turn", type=int, default=None)
parser.add_argument("--max_input_length", type=int, default=160)
parser.add_argument("--max_decoder_input_length", type=int, default=40)
parser.add_argument("--max_knowledge_len", type=int, default=None)
parser.add_argument("--multi_knl", action="store_true", help="allow candidate knowledge items")
parser.add_argument("--label_num", type=int, default=None)
parser.add_argument("--only_encode", action="store_true", help="only do encoding")
# infer dataset and candidate data path
parser.add_argument("--train_input_file", type=str, default="DATA/train.txt")
parser.add_argument("--eval_input_file", type=str, default="DATA/valid.txt")
parser.add_argument("--infer_input_file", type=str, default="DATA/test.txt")
parser.add_argument("--candidate_num", type=int, default=10)
# training hyper parameters for mitigation
parser.add_argument("--epoch_num", type=int, default=1, help="how many training epochs")
parser.add_argument("--train_batch_size", type=int, default=1, help="batch size now means per GPU per step")
parser.add_argument("--accumulate_step", type=int, default=8,
help="to increase effective batch size and reduce synchronization")
parser.add_argument("--valid_step", type=int, default=200)
parser.add_argument("--max_lr", type=float, default=1e-3)
parser.add_argument("--warmup_step", type=int, default=1200, help="new API specifies num mitigation steps")
parser.add_argument("--grad_norm", type=int, default=0)
parser.add_argument("--margin", type=float, default=0.01, help="margin for ranking loss on candidate responses")
parser.add_argument("--rank_weight", type=float, default=1, help="weight for ranking loss on candidate responses")
parser.add_argument("--lm_weight", type=float, default=1, help="weight for mle loss on gold responses")
parser.add_argument("--scale", type=float, default=1, help="scale of ranking loss")
parser.add_argument("--infer_batch_size", type=int, default=16)
parser.add_argument("--eval_batch_size", type=int, default=16)
parser.add_argument("--optim_step_num", type=int, default=20000, help="new API specifies num mitigation steps")
parser.add_argument("--max_grad_norm", type=float, default=1.0)
parser.add_argument("--fp16", type=boolean_string, default=False)
parser.add_argument("--loss_scale", type=float, default=0)
parser.add_argument("--pbar", type=boolean_string, default=True, help="turn on progress bar")
parser.add_argument("--chinese", action="store_true", help="chinese language")
# distributed
parser.add_argument("--local_rank", type=int, default=-1, help="for torch.distributed")
parser.add_argument("--config", help="JSON config file")
# do normal parsing
args = parser.parse_args()
assert args.checkpoint_dir is not None, "``checkpoint_dir`` is invalid!"
mitigate_model_dir = mitigation(args)
test_checkpoints(mitigate_model_dir, args)