forked from zhangpur/SR-LSTM
-
Notifications
You must be signed in to change notification settings - Fork 2
/
models.py
317 lines (258 loc) · 13.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
'''
Main Models
Author: Pu Zhang
Date: 2019/7/1
'''
from utils import *
from basemodel import *
class LSTM(nn.Module):
def __init__(self,args):
super(LSTM,self).__init__()
self.args=args
self.ifdropout=args.ifdropout
self.using_cuda=args.using_cuda
self.inputLayer=nn.Linear(args.input_size,args.input_embed_size)
self.cell = LSTMCell(args.input_embed_size, args.rnn_size)
self.outputLayer=nn.Linear(args.rnn_size,args.output_size)
self.dropout=nn.Dropout(args.dropratio)
nn.init.constant(self.inputLayer.bias, 0.0)
nn.init.normal(self.inputLayer.weight,std=args.std_in)
nn.init.xavier_uniform(self.cell.weight_ih)
nn.init.orthogonal(self.cell.weight_hh,gain=0.001)
nn.init.constant(self.cell.bias_ih, 0.0)
nn.init.constant(self.cell.bias_hh, 0.0)
n = self.cell.bias_ih.size(0)
nn.init.constant(self.cell.bias_ih[n // 4:n // 2], 1.0)
nn.init.constant(self.outputLayer.bias, 0.0)
nn.init.normal(self.outputLayer.weight,std=args.std_out)
self.input_Ac=nn.ReLU()
def forward(self, inputs,iftest=False):
nodes_abs, nodes_norm, shift_value, seq_list, nei_list, nei_num, batch_pednum = inputs
num_Ped = nodes_norm.shape[1]
outputs = torch.zeros(nodes_norm.shape[0], num_Ped, self.args.output_size)
hidden_states = torch.zeros(num_Ped, self.args.rnn_size)
cell_states = torch.zeros(num_Ped, self.args.rnn_size)
if self.args.using_cuda:
outputs=outputs.cuda()
hidden_states = hidden_states.cuda()
cell_states = cell_states.cuda()
# For each frame in the sequence
for framenum in range(self.args.seq_length-1):
if framenum >= self.args.obs_length and iftest:
node_index = seq_list[self.args.obs_length - 1] > 0
nodes_current = outputs[framenum - 1, node_index]
else:
node_index=seq_list[framenum]>0
nodes_current = nodes_norm[framenum,node_index]
hidden_states_current=hidden_states[node_index]
cell_states_current=cell_states[node_index]
input_embedded = self.dropout(self.input_Ac(self.inputLayer(nodes_current)))
_,hidden_states_current, cell_states_current = self.cell.forward(input_embedded, (hidden_states_current,cell_states_current))
if self.using_cuda:
outputs_current = self.outputLayer(hidden_states_current).cuda()
else:
outputs_current = self.outputLayer(hidden_states_current)
outputs[framenum,node_index]=outputs_current
hidden_states[node_index]=hidden_states_current
cell_states[node_index] = cell_states_current
return outputs, hidden_states, cell_states,(0,0,0)
class SRLSTM(nn.Module):
def __init__(self, args):
super(SRLSTM, self).__init__()
self.args = args
self.ifdropout = args.ifdropout
self.using_cuda = args.using_cuda
self.inputLayer = nn.Linear(args.input_size, args.input_embed_size)
self.cell = LSTMCell(args.input_embed_size, args.rnn_size)
self.gcn = GCN(args,self.args.rela_embed_size, args.rnn_size)
if self.args.passing_time>1:
self.gcn1 = GCN(args, self.args.rela_embed_size, args.rnn_size)
if self.args.passing_time==3:
self.gcn2 = GCN(args, self.args.rela_embed_size, args.rnn_size)
self.outputLayer = nn.Linear(args.rnn_size, args.output_size)
self.dropout = nn.Dropout(args.dropratio)
self.input_Ac = nn.ReLU()
if args.using_cuda:
self = self.cuda(device=args.gpu)
self.init_parameters()
def init_parameters(self):
nn.init.constant(self.inputLayer.bias, 0.0)
nn.init.normal(self.inputLayer.weight, std=self.args.std_in)
nn.init.xavier_uniform(self.cell.weight_ih)
nn.init.orthogonal(self.cell.weight_hh, gain=0.001)
nn.init.constant(self.cell.bias_ih, 0.0)
nn.init.constant(self.cell.bias_hh, 0.0)
n = self.cell.bias_ih.size(0)
nn.init.constant(self.cell.bias_ih[n // 4:n // 2], 1.0)
nn.init.constant(self.outputLayer.bias, 0.0)
nn.init.normal(self.outputLayer.weight, std=self.args.std_out)
def forward(self, inputs,iftest=False):
nodes_abs, nodes_norm, shift_value, seq_list, nei_list, nei_num, batch_pednum=inputs
num_Ped = nodes_norm.shape[1]
outputs=torch.zeros(nodes_norm.shape[0],num_Ped, self.args.output_size)
hidden_states = torch.zeros(num_Ped, self.args.rnn_size)
cell_states = torch.zeros(num_Ped, self.args.rnn_size)
value1_sum=0
value2_sum=0
value3_sum=0
if self.using_cuda:
outputs=outputs.cuda()
hidden_states = hidden_states.cuda()
cell_states = cell_states.cuda()
# For each frame in the sequence
for framenum in range(self.args.seq_length-1):
if framenum >= self.args.obs_length and iftest:
node_index = seq_list[self.args.obs_length - 1] > 0
nodes_current = outputs[framenum - 1, node_index].clone()
nodes_abs=shift_value[framenum,node_index]+nodes_current
nodes_abs=nodes_abs.repeat(nodes_abs.shape[0], 1, 1)
corr_index=nodes_abs.transpose(0,1)-nodes_abs
else:
node_index=seq_list[framenum]>0
nodes_current = nodes_norm[framenum,node_index]
corr = nodes_abs[framenum, node_index].repeat(nodes_current.shape[0], 1, 1)
nei_index = nei_list[framenum, node_index]
nei_index = nei_index[:, node_index]
# relative coords
corr_index = corr.transpose(0,1)-corr
nei_num_index=nei_num[framenum,node_index]
hidden_states_current=hidden_states[node_index]
cell_states_current=cell_states[node_index]
input_embedded = self.dropout(self.input_Ac(self.inputLayer(nodes_current)))
lstm_state = self.cell.forward(input_embedded, (hidden_states_current,cell_states_current))
for p in range(self.args.passing_time ):
if p==0:
lstm_state, look = self.gcn.forward(corr_index, nei_index, nei_num_index, lstm_state,self.gcn.W_nei)
value1, value2, value3 = look
if p==1:
lstm_state, look = self.gcn1.forward(corr_index, nei_index, nei_num_index, lstm_state,self.gcn1.W_nei)
_, hidden_states_current, cell_states_current = lstm_state
value1_sum+=value1
value2_sum+=value2
value3_sum+=value3
outputs_current = self.outputLayer(hidden_states_current)
outputs[framenum,node_index]=outputs_current
hidden_states[node_index]=hidden_states_current
cell_states[node_index] = cell_states_current
return outputs, hidden_states, cell_states,(value1_sum/self.args.seq_length,value2_sum/self.args.seq_length,value3_sum/self.args.seq_length)
class SocialLSTM(nn.Module):
def __init__(self,args):
super(SocialLSTM,self).__init__()
self.grid_size=args.grid_size
self.args=args
self.ifdropout=args.ifdropout
self.using_cuda=args.using_cuda
self.inputLayer=nn.Linear(self.args.input_size,self.args.input_embed_size)
self.TensorEmbedLayer = nn.Linear(self.grid_size*self.grid_size*self.args.rnn_size, self.args.input_embed_size)
self.cell = nn.LSTMCell(args.input_embed_size*2, args.rnn_size)
self.outputLayer=nn.Linear(args.rnn_size,args.output_size)
self.dropout=nn.Dropout(args.dropratio)
self.relu=nn.ReLU()
nn.init.constant(self.TensorEmbedLayer.bias, 0.0)
nn.init.xavier_uniform(self.TensorEmbedLayer.weight)
nn.init.constant(self.inputLayer.bias, 0.0)
nn.init.normal(self.inputLayer.weight,std=args.std_in)
nn.init.xavier_uniform(self.cell.weight_ih)
nn.init.orthogonal(self.cell.weight_hh,gain=0.001)
nn.init.constant(self.cell.bias_ih, 0.0)
nn.init.constant(self.cell.bias_hh, 0.0)
n = self.cell.bias_ih.size(0)
nn.init.constant(self.cell.bias_ih[n // 4:n // 2], 1.0)
nn.init.constant(self.outputLayer.bias, 0.0)
nn.init.normal(self.outputLayer.weight,std=args.std_out)
if args.using_cuda:
self=self.cuda(device=args.gpu)
def forward(self, inputs,iftest=False):
nodes_abs, nodes_norm, shift_value, seq_list, nei_list, nei_num, batch_pednum=inputs
num_Ped = nodes_norm.shape[1]
outputs=torch.zeros(nodes_norm.shape[0],num_Ped, self.args.output_size)
hidden_states = torch.zeros(num_Ped, self.args.rnn_size)
cell_states = torch.zeros(num_Ped, self.args.rnn_size)
scale_sum=0
mean_sum=0
std_sum=0
if self.using_cuda:
outputs=outputs.cuda()
hidden_states = hidden_states.cuda()
cell_states = cell_states.cuda()
# For each frame in the sequence
for framenum in range(self.args.seq_length-1):
if framenum >= self.args.obs_length and iftest:
node_index = seq_list[self.args.obs_length - 1] > 0
nodes_current = outputs[framenum - 1, node_index].clone()
nodes_abs=shift_value[framenum,node_index]+nodes_current
nodes_abs=nodes_abs.repeat(nodes_abs.shape[0], 1, 1)
corr_index=nodes_abs.transpose(0,1)-nodes_abs
else:
node_index=seq_list[framenum]>0
nodes_current = nodes_norm[framenum,node_index]
corr = nodes_abs[framenum, node_index].repeat(nodes_current.shape[0], 1, 1)
nei_index = nei_list[framenum, node_index]
nei_index = nei_index[:, node_index]
# relative coords
corr_index = corr.transpose(0,1)-corr
hidden_states_current=hidden_states[node_index]
cell_states_current=cell_states[node_index]
grid_current = self.getGridMask(nodes_current.shape[0], corr_index,nei_index)
social_tensor = self.getSocialTensor(grid_current, hidden_states_current)
tensor_embedded = self.dropout(self.relu(self.TensorEmbedLayer(social_tensor)))
input_embedded = self.dropout(self.relu(self.inputLayer(nodes_current)))
concat_embedded = torch.cat((input_embedded, tensor_embedded), 1)
lstm_state = self.cell.forward(concat_embedded, (hidden_states_current,cell_states_current))
hidden_states_current, cell_states_current = lstm_state
outputs_current = self.outputLayer(hidden_states_current)
outputs[framenum,node_index]=outputs_current
hidden_states[node_index]=hidden_states_current
cell_states[node_index] = cell_states_current
return outputs, hidden_states, cell_states,(scale_sum/self.args.seq_length,mean_sum/self.args.seq_length,std_sum/self.args.seq_length)
def getGridMask(self,numPeds, corr_index,nei_index):
'''
Comput the binary mask of the pairwise occupancy grid
Params:
numPeds: number of all Pedestrians
corr_index: their relative locations
nei_index: neighbor exsistence flag
Return:
grid_size : Scalar value representing the size of the grid discretization
'''
grid = torch.full((numPeds,numPeds,self.args.grid_size,self.args.grid_size), 0, device=torch.device("cuda")) #cubic tensor H
corr_index_true=corr_index*torch.cat((nei_index.view(numPeds,numPeds,1),nei_index.view(numPeds,numPeds,1)),2)
# relative locations between all pedestrians
corr_index_true[corr_index_true==0]=np.Inf
# valid relative locations considering neighbors standing in neighbor_thred * neighbor_thred
corr_index_true[abs(corr_index_true)>(self.args.nei_thred_slstm-1e-5)]=np.Inf
# relative location validation mask
gridmask=corr_index_true!=np.Inf
gridmask[:,:,0]=gridmask[:,:,0] * gridmask[:,:,1]
gridmask[:, :, 1]=gridmask[:,:,0]
if torch.sum(gridmask)>0:
# bin side size of the cubic tensor H
bin_size = self.args.nei_thred_slstm * 2 / self.args.grid_size
# convert the distance meter into bin index,
# -1e-10 is to make sure the result bin index is smaller than grid_size
corr_index_true = corr_index_true // bin_size
# may have bug using //
# corr_index_true = (corr_index_true / bin_size).floor()
# make the bin index from [-grid_size/2, grid_size/2-1] to [0,grid_size-1]
corr_index_true += self.args.grid_size / 2
grid_index = corr_index_true[gridmask].view(-1, 2).long()
# Get the cubic tensor
grid[gridmask[:, :, 0], grid_index[:, 0], grid_index[:, 1]] = 1
grid=grid.view(numPeds,numPeds,-1)
return grid
def getSocialTensor(self, grid, hidden_states):
'''
Computes the social tensor.
grid : Grid masks
hidden_states : Hidden states of all peds
Return: social_tensor, N*D
Note:
Imagining that there is only one grid, it is equal to sum the all valid hidden values,
we can respectively sum features along hidden dimension.
'''
# Number of peds
numPeds = grid.size()[0]
#exchange the dimension,
grid1 = grid.transpose(1,0).contiguous().view(numPeds, -1)
social_tensor=torch.mm(torch.t(grid1),hidden_states).view(numPeds, -1)
return social_tensor