-
Notifications
You must be signed in to change notification settings - Fork 0
/
base_env.def
73 lines (64 loc) · 2.18 KB
/
base_env.def
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Bootstrap: docker
From: nvidia/cuda:11.7.1-cudnn8-devel-ubuntu20.04
%environment
export "PATH=/opt/conda/bin:$PATH"
%files
%post
##Python lives in a Anaconda environment in the container, so the PATH must be adjusted before conda can be called
export "PATH=/opt/conda/bin:$PATH"
##Install the dependencies of the training script
apt-get update
apt-get install -y wget
apt-get install -y debconf-utils
echo 'debconf debconf/frontend select Noninteractive' | debconf-set-selections
echo 'tzdata tzdata/Areas select Europe' | debconf-set-selections
echo 'tzdata tzdata/Zones/Europe select Berlin' | debconf-set-selections
apt-get install -y tzdata
apt-get install -y r-base-core
apt-get install -y libcairo2-dev pkg-config python-dev
apt-get install -y python3-pip
#apt-get install -y mpich
apt-get install -y git
#conda install termcolor
pip install pytorch-lightning
pip install wandb
pip install beautifulsoup4==4.12.2
pip install denoising-diffusion-pytorch==1.8.0
pip install evaluate==0.4.0
pip install huggingface-hub==0.16.4
pip install lightning-utilities==0.9.0
pip install seaborn
pip install torchmetrics
pip install transformers==4.33.0
pip install vendi-score==0.0.3
pip install nltk
pip install blobfile
pip install tqdm
#pip install numpy
pip install numpy==1.22.4
pip install scipy
pip install pandas
pip install Cython
pip install piq==0.7.0
pip install joblib
pip install albumentations==0.4.3
pip install lmdb
pip install clip
pip install pillow
#pip install mpi4py
pip install packaging
pip uninstall -y ninja && pip install ninja
pip install flash-attn --no-build-isolation
pip install pycairo
pip install rpy2
pip install selene==2.0.0rc5
## Download the Cifar10 dataset and store it locally in the container under /opt/...
#cd /opt
#python -m lenet5_single_gpu download-dataset ./datasets
%runscript
export "PATH=/opt/conda/bin:$PATH"
which python3
which python
# ## Start the training of LeNet5 on the Cifar10 dataset
# cd /opt/ddsm_main/sudoku
# python -m eval_sudoku