-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddsm.py
912 lines (784 loc) · 33.4 KB
/
ddsm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
"""
The file contains everything related to Dirichlet diffusion process such as generation noise code,
sampler code, likelihood computation code, and so on.
"""
import numpy as np
import torch
import torch.nn as nn
from torch.distributions import Transform, constraints
from torch.nn.functional import pad
from torch.autograd import grad
from torch.distributions.beta import Beta, Dirichlet
from torch.distributions.beta import Beta
from scipy import integrate
import tqdm
from numbers import Real
def beta_logp(alpha, beta, x):
if isinstance(alpha, Real) and isinstance(beta, Real):
concentration = torch.tensor([float(alpha), float(beta)])
else:
concentration = torch.stack([alpha, beta], -1)
return dirichlet_logp(concentration, x)
def dirichlet_logp(concentration, x):
x = torch.stack([x, 1.0 - x], -1)
return (
(torch.log(x) * (concentration - 1.0)).sum(-1)
+ torch.lgamma(concentration.sum(-1))
- torch.lgamma(concentration).sum(-1)
)
def log_rising_factorial(a, n):
return torch.lgamma(a + n) - torch.lgamma(a)
def jacobi(x, alpha, beta, order=100):
"""
Compute Jacobi polynomials.
"""
a = alpha
b = beta
recur_fun = lambda p_n, p_n_minus1, n, x: (
torch.mul(
x * (2 * n + a + b + 2) * (2 * n + a + b) + (a ** 2 - b ** 2),
p_n)
* (2 * n + a + b + 1)
- p_n_minus1 * (n + a) * (n + b) * (2 * n + a + b + 2) * 2
) / (2 * (n + 1) * (n + a + b + 1) * (2 * n + a + b))
if order == 0:
return torch.ones_like(x)[:, None]
else:
ys = [torch.ones_like(x), (a + 1) + (a + b + 2) * (x - 1) * 0.5]
for i in range(1, order - 1):
ys.append(recur_fun(ys[i], ys[i - 1], i, x))
return torch.stack(ys, -1)
def jacobi_diffusion_density(x0, xt, t, a, b, order=100, speed_balanced=True):
"""
Compute Jacobi diffusion transition density function.
"""
n = torch.arange(order, device=x0.device).double().expand(*x0.shape, order)
if speed_balanced:
s = 2 / (a + b)
else:
s = torch.ones_like(a)
eigenvalues = (
-0.5 * s.unsqueeze(-1) * n * (n - 1 + a.unsqueeze(-1) + b.unsqueeze(-1))
)
logdn = (
log_rising_factorial(a.unsqueeze(-1), n)
+ log_rising_factorial(b.unsqueeze(-1), n)
- log_rising_factorial((a + b).unsqueeze(-1), n - 1)
- torch.log(2 * n + (a + b).unsqueeze(-1) - 1)
- torch.lgamma(n + 1)
)
return (
torch.exp(beta_logp(a, b, xt).unsqueeze(-1) + (eigenvalues * t - logdn))
* jacobi(x0 * 2 - 1, alpha=b - 1, beta=a - 1, order=order)
* jacobi(xt * 2 - 1, alpha=b - 1, beta=a - 1, order=order)
).sum(-1)
# Original JEM_sampler
# def Jacobi_Euler_Maruyama_sampler(
# x0, a, b, t, num_steps, speed_balanced=True, device="cuda", eps=1e-5
# ):
# """
# Generate Jacobi diffusion samples with the Euler-Maruyama solver.
# """
# a = a.to(device)
# b = b.to(device)
# x0 = x0.to(device)
# if speed_balanced:
# s = 2 / (a + b)
# else:
# s = torch.ones_like(a)
# def step(x, step_size):
# g = torch.sqrt(s * x * (1 - x))
# return (
# x
# + 0.5 * s * (a * (1 - x) - b * x) * step_size
# + torch.sqrt(step_size) * g * torch.randn_like(x)
# )
# time_steps = torch.linspace(0, t, num_steps, device=device)
# step_size = time_steps[1] - time_steps[0]
# x = x0
# with torch.no_grad():
# for _ in time_steps:
# x_next = step(x, step_size)
# x_next = x_next.clip(eps, 1 - eps)
# x = x_next
# return x
##########tianqi start ###########
def reflect_boundaries(x, lower_bound=0.0, upper_bound=1.0):
x = torch.where(x < lower_bound, 2 * lower_bound - x, x)
x = torch.where(x > upper_bound, 2 * upper_bound - x, x)
return x
def reflect(x):
"""
Performs reflections until x is inside the domain.
Args
----
x (Tensor):
input of shape [B, ...]
Returns
-------
an output Tensor with the same shape as x which is the "reflected"-inside version.
"""
xm2 = x % 2
xm2[xm2 > 1] = 2 - xm2[xm2 > 1]
return xm2
def Jacobi_Euler_Maruyama_sampler(
x0, a, b, t, num_steps, speed_balanced=True, device="cuda", eps=1e-5, boundary_mode='clamp'
):
"""
Generate Jacobi diffusion samples with the Euler-Maruyama solver.
"""
a = a.to(device)
b = b.to(device)
x0 = x0.to(device)
if speed_balanced:
s = 2 / (a + b)
else:
s = torch.ones_like(a)
#print('here is speed balance in ddsm.py:', s)
def step(x, step_size):
g = torch.sqrt(s * x * (1 - x))
# return (
# x
# + 0.5 * s * (a * (1 - x) - b * x) * step_size
# + torch.sqrt(step_size) * g * torch.randn_like(x)
# )
dx = x + 0.5 * s * (a * (1 - x) - b * x) * step_size
x_next = dx + torch.sqrt(step_size) * g * torch.randn_like(x) #modfy the step process more compact and cleaner
##### Ensure the values stay within [0, 1]
# <<<<<<< HEAD
# x_next = torch.clamp(x_next, eps, 1 - eps)
# #x_next = reflect_boundaries(x_next, eps, 1 - eps)
# #x_next= reflect(x_next)
# =======
if boundary_mode == 'clamp':
x_next = torch.clamp(x_next, eps, 1 - eps)
elif boundary_mode == 'reflect_boundaries':
x_next = reflect_boundaries(x_next, eps, 1 - eps)
elif boundary_mode == 'reflection':
x_next= reflect(x_next)
else:
raise ValueError
return x_next
time_steps = torch.linspace(0, t, num_steps, device=device)
step_size = time_steps[1] - time_steps[0]
x = x0
# with torch.no_grad():
# for _ in time_steps:
# x_next = step(x, step_size)
# x_next = x_next.clip(eps, 1 - eps)
# x = x_next
with torch.no_grad():
for _ in time_steps:
x = step(x, step_size) #clamping is added already in function step().
return x
##########tianqi end ##########
def noise_factory(N, n_time_steps, a, b, total_time=4, order=100,
time_steps=1000, speed_balanced=True, logspace=False,
mode="independent",
#mode="path",
device="cuda",
noise_only=False,
# noise_only=True,
boundary_mode='clamp'):
"""
Generate Jacobi diffusion samples and compute score of transition density function.
"""
assert a.size() == b.size()
noise_factory_one = torch.ones(N, n_time_steps, a.size(-1))
noise_factory_zero = torch.zeros(N, n_time_steps, a.size(-1))
if logspace:
timepoints = np.logspace(np.log10(0.01), np.log10(total_time), n_time_steps)
else:
timepoints = np.linspace(0, total_time, n_time_steps + 1)[1:]
if mode == "independent":
for i, t in enumerate(timepoints):
noise_factory_one[:, i, :] = Jacobi_Euler_Maruyama_sampler(
noise_factory_one[:, i, :], a, b, t, time_steps,
speed_balanced=speed_balanced, device=device, boundary_mode=boundary_mode)
noise_factory_zero[:, i, :] = Jacobi_Euler_Maruyama_sampler(
noise_factory_zero[:, i, :], a, b, t, time_steps,
speed_balanced=speed_balanced, device=device, boundary_mode=boundary_mode)
elif mode == "path":
for i, t in enumerate(timepoints):
if i == 0:
noise_factory_one[:, i, :] = Jacobi_Euler_Maruyama_sampler(
noise_factory_one[:, i, :], a, b, timepoints[i], time_steps,
speed_balanced=speed_balanced, device=device, boundary_mode=boundary_mode)
noise_factory_zero[:, i, :] = Jacobi_Euler_Maruyama_sampler(
noise_factory_zero[:, i, :], a, b, timepoints[i], time_steps,
speed_balanced=speed_balanced, device=device, boundary_mode=boundary_mode)
else:
noise_factory_one[:, i, :] = Jacobi_Euler_Maruyama_sampler(
noise_factory_one[:, i - 1, :],
a, b, timepoints[i] - timepoints[i - 1], time_steps,
speed_balanced=speed_balanced, device=device, boundary_mode=boundary_mode)
noise_factory_zero[:, i, :] = Jacobi_Euler_Maruyama_sampler(
noise_factory_zero[:, i - 1, :],
a, b, timepoints[i] - timepoints[i - 1], time_steps,
speed_balanced=speed_balanced, device=device, boundary_mode=boundary_mode)
else:
raise ValueError
if noise_only:
return noise_factory_one, noise_factory_zero, timepoints
else:
noise_factory_one_loggrad = torch.zeros(N, n_time_steps, a.size(-1))
noise_factory_zero_loggrad = torch.zeros(N, n_time_steps, a.size(-1))
for i, t in enumerate(timepoints):
xt = noise_factory_one[:, i, :].detach().clone()
xt.requires_grad = True
p = jacobi_diffusion_density(
torch.ones(xt.size(), device=device),
xt.to(device), t, a.to(device), b.to(device), order=order,
speed_balanced=speed_balanced,
)
p.log().sum().backward()
noise_factory_one_loggrad[:, i, :] = xt.grad.to(
noise_factory_zero_loggrad.device
)
xt = noise_factory_zero[:, i, :].detach().clone()
xt.requires_grad = True
p = jacobi_diffusion_density(
torch.zeros(xt.size(), device=device),
xt.to(device), t, a.to(device), b.to(device),
order=order,
speed_balanced=speed_balanced,
)
p.log().sum().backward()
noise_factory_zero_loggrad[:, i, :] = xt.grad.to(
noise_factory_zero_loggrad.device
)
return (
noise_factory_one,
noise_factory_zero,
noise_factory_one_loggrad,
noise_factory_zero_loggrad,
timepoints,
)
class UnitStickBreakingTransform(Transform):
"""
Transform from unconstrained 0-1 space to the simplex of one additional
dimension via a stick-breaking process. This different from PyTorch's
StickBreakingTransform which transform from unconstrained space and apply
a sigmoid transform.
This transform arises from an iterative stick-breaking
construction of the `Dirichlet` distribution: the first probability p1 is
used as is and second probability is multiplied by 1 - p1,
the third probability is multiplied by (1- p1 -p2 ) and the process iterative.
This is bijective and appropriate for use in HMC; however it mixes
coordinates together and is less appropriate for optimization.
"""
domain = constraints.unit_interval
codomain = constraints.simplex
bijective = True
def __eq__(self, other):
return isinstance(other, UnitStickBreakingTransform)
def _call(self, x):
x_cumprod = (1 - x).cumprod(-1)
y = pad(x, [0, 1], value=1) * pad(x_cumprod, [1, 0], value=1)
return y
def _inverse(self, y, prevent_nan=False):
y_crop = y[..., :-1]
# sf = 1 - y_crop.cumsum(-1)
# sacrifice some performance for better numerical stability
sf = torch.flip(torch.flip(y, dims=(-1,)).cumsum(-1), dims=(-1,))[..., :-1]
# inverse of 1
if prevent_nan:
x = y_crop / (sf + torch.finfo(y.dtype).tiny)
else:
x = y_crop / sf
return x
def log_abs_det_jacobian(self, x, y=None):
# log det of the inverse transform
detJ = -(
(1 - x).log() * torch.arange(x.shape[-1] - 1, -1, -1, device=x.device)
).sum(-1)
return detJ
def log_abs_det_jacobian_forward(self, x, y=None):
# log det of the forward transform
detJ = (
(1 - x).log() * torch.arange(x.shape[-1] - 1, -1, -1, device=x.device)
).sum(-1)
return detJ
def forward_shape(self, shape):
if len(shape) < 1:
raise ValueError("Too few dimensions on input")
return shape[:-1] + (shape[-1] + 1,)
def inverse_shape(self, shape):
if len(shape) < 1:
raise ValueError("Too few dimensions on input")
return shape[:-1] + (shape[-1] - 1,)
def simplex_diffusion_density(x0, xt, t, a, b, speed_balanced=True, order=100):
sb = UnitStickBreakingTransform()
y0 = sb._inverse(x0, prevent_nan=True)
yt = sb._inverse(xt, prevent_nan=True)
pt = jacobi_diffusion_density(
y0, yt, t, a, b, order=order, speed_balanced=speed_balanced
)
return pt.log().sum(-1) + sb.log_abs_det_jacobian(xt, yt)
def gx_to_gv(gx, x, create_graph=False, compute_gradlogdet=True):
gx = gx.double()
x = x.double()
sb = UnitStickBreakingTransform()
v = sb._inverse(x, prevent_nan=True).detach()
v.requires_grad = True
x = sb(v)
gv = grad(x, v, gx, create_graph=create_graph)[0]
if compute_gradlogdet:
logdet = sb.log_abs_det_jacobian(v, x)
gradlogdet = grad(logdet.sum(), v, create_graph=create_graph)[0]
gv = gv - gradlogdet
return gv.float()
def gv_to_gx(gv, v, create_graph=False, compute_gradlogdet=True):
gv = gv.double()
v = v.double()
sb = UnitStickBreakingTransform()
x = sb(v).detach()
x.requires_grad = True
v = sb._inverse(x, prevent_nan=True)
if compute_gradlogdet:
logdet = sb.log_abs_det_jacobian(v, x)
gradlogdet = grad(logdet.sum(), v)[0]
return grad(v, x, gv + gradlogdet, create_graph=create_graph)[0].float()
else:
return grad(v, x, gv, create_graph=create_graph)[0].float()
#############################################
## DIFFUSION FACTORIES - FAST and NON-FAST ##
#############################################
def diffusion_factory(
x, time_ind, noise_factory_one, noise_factory_zero,
noise_factory_one_loggrad, noise_factory_zero_loggrad,
alpha=None, beta=None, device="cuda", return_v=False, eps=1e-5, ):
"""
Generate multivariate Jacobi diffusion samples and scores
by sampling from noise factory for k-1 Jacobi diffusion processes.
"""
time_ind = time_ind[(...,) + (None,) * (x.ndim - 2)].expand(x.shape[:-1])
K = x.shape[-1]
if alpha is None:
alpha = torch.ones(K - 1)
if beta is None:
beta = torch.arange(K - 1, 0, -1, dtype=torch.float)
noise_factory_size = noise_factory_one.shape[0]
sb = UnitStickBreakingTransform()
sample_inds = torch.randint(0, noise_factory_size, size=x.size()[:-1])
print(sample_inds.device)
v_samples = noise_factory_zero[sample_inds, time_ind, :].to(device).float()
v_samples_grad = (
noise_factory_zero_loggrad[sample_inds, time_ind, :].to(device).float()
)
print(v_samples.device)
print(v_samples_grad.device)
inds = x == 1
for i in range(K - 1):
if torch.sum(inds[..., i]) != 0:
v_samples[..., i][inds[..., i]] = (
noise_factory_one[sample_inds[inds[..., i]], time_ind[inds[..., i]], i]
.to(device).float()
)
v_samples_grad[..., i][inds[..., i]] = (
noise_factory_one_loggrad[
sample_inds[inds[..., i]], time_ind[inds[..., i]], i
].to(device).float()
)
if i + 1 < alpha.shape[0]:
B = Beta(
alpha[i + 1:].float().to(device), beta[i + 1:].float().to(device)
)
v = B.sample((inds[..., i].sum(),)).clip(eps, 1 - eps)
v = v.detach()
v.requires_grad = True
B.log_prob(v).sum().backward()
v_samples[..., i + 1:][inds[..., i]] = v.detach()
v_samples_grad[..., i + 1:][inds[..., i]] = v.grad
if return_v:
return v_samples, v_samples_grad
else:
v_samples.requires_grad = True
samples = sb(v_samples)
samples_grad = gv_to_gx(v_samples_grad, v_samples)
samples_grad -= samples_grad.mean(-1, keepdims=True)
return samples, samples_grad
############ Add ##################
def diffusion_factory_add(
x, time_ind, noise_factory_one, noise_factory_zero,
noise_factory_one_loggrad, noise_factory_zero_loggrad,
alpha=None, beta=None, device="cuda", return_v=False, eps=1e-5, ):
"""
Generate multivariate Jacobi diffusion samples and scores
by sampling from noise factory for k-1 Jacobi diffusion processes.
"""
time_ind = time_ind[(...,) + (None,) * (x.ndim - 2)].expand(x.shape[:-1])
K = x.shape[-1]
if alpha is None:
alpha = torch.ones(K - 1)
if beta is None:
beta = torch.arange(K - 1, 0, -1, dtype=torch.float)
noise_factory_size = noise_factory_one.shape[0]
sb = UnitStickBreakingTransform()
sample_inds = torch.randint(0, noise_factory_size, size=x.size()[:-1]).to(device)
######################### S
print(sample_inds.device)
sample_inds = sample_inds.to(noise_factory_zero.device)
time_ind = time_ind.to(noise_factory_zero.device)
######################### E
v_samples = noise_factory_zero[sample_inds, time_ind, :].float()
v_samples_grad = (
noise_factory_zero_loggrad[sample_inds, time_ind, :].float()
)
######################## S
print(v_samples.device)
print(v_samples_grad.device)
######################## E
inds = x == 1
for i in range(K - 1):
if torch.sum(inds[..., i]) != 0:
v_samples[..., i][inds[..., i]] = (
noise_factory_one[sample_inds[inds[..., i]], time_ind[inds[..., i]], i]
.to(device).float()
)
v_samples_grad[..., i][inds[..., i]] = (
noise_factory_one_loggrad[
sample_inds[inds[..., i]], time_ind[inds[..., i]], i
].to(device).float()
)
if i + 1 < alpha.shape[0]:
B = Beta(
alpha[i + 1:].float().to(device), beta[i + 1:].float().to(device)
)
v = B.sample((inds[..., i].sum(),)).clip(eps, 1 - eps)
v = v.detach()
v.requires_grad = True
B.log_prob(v).sum().backward()
v_samples[..., i + 1:][inds[..., i]] = v.detach()
v_samples_grad[..., i + 1:][inds[..., i]] = v.grad
if return_v:
return v_samples, v_samples_grad
else:
v_samples.requires_grad = True
samples = sb(v_samples)
samples_grad = gv_to_gx(v_samples_grad, v_samples)
samples_grad -= samples_grad.mean(-1, keepdims=True)
return samples, samples_grad
########### Add end ###################
def diffusion_fast_flatdirichlet(
x, time_inds, noise_factory_one, noise_factory_one_loggrad, symmetrize=False
):
"""
Fast multivariate Jacobi diffusion sampling assuming the stationary
distribution is specified as Dir(1,1,1,1,...). Only requires
noise factory for for one Jacobi diffusion process (1, k-1).
"""
with torch.no_grad():
k = x.shape[-1]
sample_inds = torch.randint(0, noise_factory_one.shape[0], x.size()[:-1])
x_samples = torch.zeros(x.size()).to(x.device)
x_samples_grad = torch.zeros(x.size()).to(x.device)
x_samples[..., 0] = noise_factory_one[
sample_inds, time_inds[(...,) + (None,) * (x.ndim - 2)], 0]
x_samples_grad[..., 0] = noise_factory_one_loggrad[
sample_inds, time_inds[(...,) + (None,) * (x.ndim - 2)], 0
] + (k - 2) / (1 - x_samples[..., 0])
D = Dirichlet(torch.ones(k - 1))
d = D.sample((x.size()[:-1]))
x_samples[..., 1:] = (1 - x_samples[..., [0]]) * d.data
inds = x == 1
if symmetrize:
x_samples_grad -= x_samples_grad.mean(-1, keepdims=True)
for i in range(k):
if i != 0:
temp = x_samples[..., i][inds[..., i]].detach().clone()
x_samples[..., i][inds[..., i]] = x_samples[..., 0][inds[..., i]]
x_samples[..., 0][inds[..., i]] = temp
temp = x_samples_grad[..., i][inds[..., i]].detach().clone()
x_samples_grad[..., i][inds[..., i]] = x_samples_grad[..., 0][
inds[..., i]
]
x_samples_grad[..., 0][inds[..., i]] = temp
return x_samples, x_samples_grad
#############################################
################ MODEL PART #################
#############################################
class GaussianFourierProjection(nn.Module):
"""
Gaussian random features for encoding time steps.
"""
def __init__(self, embed_dim, scale=30.):
super().__init__()
# Randomly sample weights during initialization. These weights are fixed
# during optimization and are not trainable.
self.W = nn.Parameter(torch.randn(embed_dim // 2) * scale, requires_grad=False)
def forward(self, x):
x_proj = x[:, None] * self.W[None, :] * 2 * np.pi
return torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
#############################################
############### Samplers ####################
#############################################
def Euler_Maruyama_sampler(
score_model,
sample_shape,
init=None,
mask=None,
alpha=None,
beta=None,
max_time=4,
min_time=0.01,
time_dilation=1,
time_dilation_start_time=None,
batch_size=64,
num_steps=100,
device="cuda",
random_order=False,
speed_balanced=True,
speed_factor=None,
concat_input=None,
eps=1e-5,
):
"""
Generate samples from score-based models with the Euler-Maruyama solver
for (multivariate) Jacobi diffusion processes with stick-breaking
construction.
Parameters
----------
score_model : torch.nn.Module
A PyTorch time-dependent score model.
sample_shape : tuple
Shape of all dimensions of sample tensor without the batch dimension.
init: torch.Tensor, default is None
If specified, use as initial values instead of sampling from stationary distribution.
alpha : torch.Tensor, default is None
Jacobi Diffusion parameters. If None, use default choices of alpha, beta =
(1, k-1), (1, k-2), (1, k-3), ..., (1, 1) where k is the number of categories.
beta : torch.Tensor, default is None
See above `for alpha`.
max_time : float, default is 4
Max time of reverse diffusion sampling.
min_time : float, default is 0.01
Min time of reverse diffusion sampling.
time_dilation : float, default is 1
Use `time_dilation > 1` to bias samples toward high density areas.
time_dilation_start_time : float, default is None
If specified, start time dilation from this timepoint to min_time.
batch_size : int, default is 64
Number of samples to generate
num_steps: int, default is 100
Total number of steps for reverse diffusion sampling.
device: str, default is 'cuda'
Use 'cuda' to run on GPU or 'cpu' to run on CPU
random_order : bool, default is False
Whether to convert x to v space with randomly ordered stick-breaking transform.
speed_balanced : bool, default is True
If True use speed factor `s=(a+b)/2`, otherwise use `s=1`.
eps: float, default is 1e-5
All state values are clamped to (eps, 1-eps) for numerical stability.
Returns
-------
Samples : torch.Tensor
Samples in x space.
"""
sb = UnitStickBreakingTransform()
if alpha is None:
alpha = torch.ones(sample_shape[-1] - 1, dtype=torch.float, device=device)
if beta is None:
beta = torch.arange(
sample_shape[-1] - 1, 0, -1, dtype=torch.float, device=device
)
if speed_balanced:
if speed_factor is None:
s = 2.0 / (alpha + beta)
else:
s = speed_factor * 2.0 / (alpha + beta)
else:
s = torch.ones(sample_shape[-1] - 1).to(device)
if init is None:
init_v = Beta(alpha, beta).sample((batch_size,) + sample_shape[:-1]).to(device)
else:
init_v = sb._inverse(init).to(device)
if time_dilation_start_time is None:
time_steps = torch.linspace(
max_time, min_time, num_steps * time_dilation + 1, device=device
)
else:
time_steps = torch.cat(
[
torch.linspace(
max_time,
time_dilation_start_time,
round(num_steps * (max_time - time_dilation_start_time) / max_time)
+ 1,
)[:-1],
torch.linspace(
time_dilation_start_time,
min_time,
round(num_steps * (time_dilation_start_time - min_time) / max_time)
* time_dilation
+ 1,
),
]
)
step_sizes = time_steps[:-1] - time_steps[1:]
time_steps = time_steps[:-1]
v = init_v.detach()
if mask is not None:
assert mask.shape[-1] == v.shape[-1]+1
if random_order:
order = np.arange(sample_shape[-1])
else:
if mask is not None:
mask_v = sb.inv(mask)
with torch.no_grad():
for i_step in tqdm.tqdm(range(len(time_steps))):
time_step = time_steps[i_step]
step_size = step_sizes[i_step]
x = sb(v)
if time_dilation_start_time is not None:
if time_step < time_dilation_start_time:
c = time_dilation
else:
c = 1
else:
c = time_dilation
if not random_order:
g = torch.sqrt(v * (1 - v))
batch_time_step = torch.ones(batch_size, device=device) * time_step
with torch.enable_grad():
if concat_input is None:
score = score_model(x, batch_time_step)
else:
score = score_model(torch.cat([x, concat_input], -1), batch_time_step)
mean_v = (
v + s[(None,) * (v.ndim - 1)] * (
(0.5 * (alpha[(None,) * (v.ndim - 1)] * (1 - v)
- beta[(None,) * (v.ndim - 1)] * v)) - (1 - 2 * v)
- (g ** 2) * gx_to_gv(score, x)
) * (-step_size) * c
)
next_v = mean_v + torch.sqrt(step_size * c) * \
torch.sqrt(s[(None,) * (v.ndim - 1)]) * g * torch.randn_like(v)
if mask is not None:
next_v[~torch.isnan(mask_v)] = mask_v[~torch.isnan(mask_v)]
v = torch.clamp(next_v, eps, 1 - eps).detach()
#v = reflect_boundaries(next_v, eps, 1 - eps).detach()
#v = reflect(next_v).detach()
else:
x = x[..., np.argsort(order)]
order = np.random.permutation(np.arange(sample_shape[-1]))
if mask is not None:
mask_v = sb.inv(mask[..., order])
v = sb._inverse(x[..., order], prevent_nan=True)
v = torch.clamp(v, eps, 1 - eps).detach()
#v = reflect_boundaries(v, eps, 1 - eps).detach()
#v = reflect(v).detach()
g = torch.sqrt(v * (1 - v))
batch_time_step = torch.ones(batch_size, device=device) * time_step
with torch.enable_grad():
if concat_input is None:
score = score_model(x, batch_time_step)
else:
score = score_model(torch.cat([x, concat_input], -1), batch_time_step)
mean_v = (v + s[(None,) * (v.ndim - 1)] * (
(0.5 * (alpha[(None,) * (v.ndim - 1)] * (1 - v)
- beta[(None,) * (v.ndim - 1)] * v))
- (1 - 2 * v) - (g ** 2) * (gx_to_gv(
score[..., order],
x[..., order]))
) * (-step_size) * c
)
next_v = mean_v + torch.sqrt(step_size * c) * torch.sqrt(
s[(None,) * (v.ndim - 1)]
) * g * torch.randn_like(v)
if mask is not None:
next_v[~torch.isnan(mask_v)] = mask_v[~torch.isnan(mask_v)]
v = torch.clamp(next_v, eps, 1 - eps).detach()
#v = reflect_boundaries(next_v, eps, 1 - eps).detach()
#v = reflect(next_v).detach()
if mask is not None:
mean_v[~torch.isnan(mask_v)] = mask_v[~torch.isnan(mask_v)]
# Do not include any noise in the last sampling step.
if not random_order:
return sb(torch.clamp(mean_v, eps, 1 - eps))
#return sb(reflect_boundaries(mean_v, eps, 1 - eps))
#return sb(reflect(mean_v))
else:
return sb(torch.clamp(mean_v, eps, 1 - eps))[..., np.argsort(order)]
#return sb(reflect_boundaries(mean_v, eps, 1 - eps))[..., np.argsort(order)]
#return sb(reflect(mean_v))[..., np.argsort(order)]
#############################################
########## Likelihood estimations ###########
#############################################
def prior_likelihood(v, alpha, beta, device='cuda'):
alpha = alpha.to(device)
beta = beta.to(device)
v = v.to(device)
return beta_logp(alpha, beta, v).sum(dim=tuple(range(1, v.ndim)))
def ode_likelihood(v,
score_model,
max_time=4,
min_time=1e-2,
time_dilation=1,
device='cuda',
eps=1e-6,
alpha=None,
beta=None,
speed_balanced=True,
concat_input=None,
verbose=False):
# Draw the random Gaussian sample for Skilling-Hutchinson's estimator.
shape = v.shape
epsilon = torch.randn(shape).to(device)
if alpha is None:
alpha = torch.ones(shape[-1])
if beta is None:
beta = torch.arange(shape[-1], 0, -1, dtype=torch.float)
alpha = alpha.to(device)
beta = beta.to(device)
if speed_balanced:
s = 2. / (alpha + beta)
else:
s = torch.ones(shape[-1]).to(device)
sb = UnitStickBreakingTransform()
def logodds(v):
return np.log(np.fmax(v, eps) / np.fmax(1 - v, eps))
def inverse_logodds(lov):
return 1 - 1 / (1 + np.exp(lov))
def divergence_eval_wrapper(sample, time_steps):
# epsilon = torch.randn(shape).to(device)
sample = torch.tensor(sample, device=device, dtype=torch.float32).reshape(shape)
time_steps = torch.tensor(time_steps, device=device, dtype=torch.float32).reshape((sample.shape[0],))
with torch.enable_grad():
sample.requires_grad_(True)
x = sb(sample)
g = torch.sqrt(sample * (1 - sample))
logdet = sb.log_abs_det_jacobian(sample)
gradlogdet = grad(logdet.sum(), sample, create_graph=True)[0]
if concat_input is not None:
score_x = score_model(torch.cat([x, concat_input], -1), time_steps * time_dilation)
else:
score_x = score_model(x, time_steps * time_dilation)
score_v = grad(x, sample, score_x, create_graph=True)[0] - gradlogdet
f_tilde = s[(None,) * (sample.ndim - 1)] * (0.5 * (alpha[(None,) * (sample.ndim - 1)] * (1 - sample) - beta[
(None,) * (sample.ndim - 1)] * sample) - 0.5 * (1 - 2 * sample) - 0.5 * (g ** 2) * (score_v))
score_e = torch.sum(f_tilde * epsilon)
grad_score_e = grad(score_e, sample)[0]
div = torch.sum(grad_score_e * epsilon, dim=tuple(range(1, grad_score_e.ndim))).cpu().numpy().astype(np.float64)
return div, f_tilde.cpu().detach().numpy().reshape((-1,)).astype(np.float64)
def ode_func(t, ode_x):
time_steps = np.ones((shape[0],)) * t
v = inverse_logodds(ode_x[:-shape[0]])
logp_grad, f_tilde = divergence_eval_wrapper(v, time_steps)
sample_grad = f_tilde * (1 / (np.fmax(v, eps)) + 1 / np.fmax(1 - v, eps))
return np.concatenate([sample_grad, logp_grad], axis=0)
init = np.concatenate([logodds(v.detach().cpu().numpy().reshape((-1,))), np.zeros((shape[0],))], axis=0)
res = integrate.solve_ivp(ode_func, (min_time, max_time), init, rtol=1e-4, atol=1e-4, method='RK23')
zp = res.y[:, -1]
z = torch.Tensor(inverse_logodds(zp[:-shape[0]])).to(device).reshape(shape)
delta_logp = torch.Tensor(zp[-shape[0]:]).to(device).reshape(shape[0])
prior_logp = prior_likelihood(z, alpha, beta)
sb_delta_logp = sb.log_abs_det_jacobian(v.to(device))
if v.ndim - 1 > 1:
sb_delta_logp = sb_delta_logp.sum(dim=tuple(range(1, v.ndim - 1)))
print(f"Number of function evaluations: {res.nfev}")
if verbose:
print("prior_logp", prior_logp)
print("delta_logp", delta_logp)
print("sb_delta_logp", sb_delta_logp)
return z, prior_logp + delta_logp + sb_delta_logp