-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfl_regr_train.py
executable file
·55 lines (47 loc) · 1.6 KB
/
fl_regr_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# coding=utf8
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from models.regr_model import CNN
from data.mtfl_data import read_data_sets, BatchRenderer
from utils.layers import mse
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_float('lr', 1e-2, 'learning rate')
tf.app.flags.DEFINE_float('valid', 0.2, 'fraction of validation set')
tf.app.flags.DEFINE_integer('n_epoch', 1000, 'number of epochs')
tf.app.flags.DEFINE_integer('batch_size', 128, 'batch size')
tf.app.flags.DEFINE_string('train_dir', 'trained_models/fl_regr_single_model/', 'dir to store models')
# Global settings
szImg = 39
n_x = szImg * szImg
n_y = 10
def main(args=None):
datasets = read_data_sets()
batches = BatchRenderer(
datasets.train.images,
datasets.train.landmarks,
datasets.train.genders,
datasets.train.smiles,
datasets.train.glasses,
datasets.train.poses,
datasets.train.all_attr,
FLAGS.batch_size)
nn = CNN(
input_shape=[FLAGS.batch_size, szImg, szImg, 1],
n_filter=[20, 40, 60, 80],
n_hidden=[120],
n_y=n_y,
receptive_field=[[4, 4], [3, 3], [3, 3], [2, 2]],
pool_size=[[2, 2], [2, 2], [2, 2], [1, 1]],
obj_fcn=mse,
logdir=FLAGS.train_dir)
nn.train(
batches,
datasets.test,
lr=FLAGS.lr,
n_epoch=FLAGS.n_epoch)
if __name__ == '__main__':
if tf.gfile.Exists(FLAGS.train_dir):
tf.gfile.DeleteRecursively(FLAGS.train_dir)
tf.gfile.MakeDirs(FLAGS.train_dir)
tf.app.run()