-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp3_with_pseu_lable.py
335 lines (300 loc) · 13.5 KB
/
exp3_with_pseu_lable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
from collections import defaultdict
import itertools
import logging
import math
import os
import pickle
import random
import sys
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as functional
import torch.optim as optim
from torch.utils.data import ConcatDataset, DataLoader
from torchnet.meter import ConfusionMeter
from options import opt
random.seed(opt.random_seed)
np.random.seed(opt.random_seed)
torch.manual_seed(opt.random_seed)
torch.cuda.manual_seed_all(opt.random_seed)
from data_prep.fdu_mtl_dataset import get_fdu_mtl_datasets, FduMtlDataset
from models import *
import utils
from vocab import Vocab
from pseudo_labeling_exp3 import make_new_list
# save models and logging
if not os.path.exists(opt.model_save_file):
os.makedirs(opt.model_save_file)
logging.basicConfig(stream=sys.stderr, level=logging.DEBUG if opt.debug else logging.INFO)
log = logging.getLogger(__name__)
fh = logging.FileHandler(os.path.join(opt.model_save_file, 'log.txt'))
log.addHandler(fh)
# output options
log.info(opt)
def train(vocab, train_sets, dev_sets, test_sets, unlabeled_sets):
"""
train_sets, dev_sets, test_sets: dict[domain] -> AmazonDataset
For unlabeled domains, no train_sets are available
"""
# dataset loaders
train_loaders, unlabeled_loaders = {}, {}
train_iters, unlabeled_iters = {}, {}
dev_loaders, test_loaders = {}, {}
my_collate = utils.unsorted_collate
my_collate_pl = utils.unsorted_collate_pl
for domain in opt.domains:
train_loaders[domain] = DataLoader(train_sets[domain], opt.batch_size, shuffle=True, collate_fn=my_collate)
train_iters[domain] = iter(train_loaders[domain])
for domain in opt.dev_domains:
dev_loaders[domain] = DataLoader(dev_sets[domain], opt.batch_size, shuffle=False, collate_fn=my_collate)
test_loaders[domain] = DataLoader(test_sets[domain], opt.batch_size, shuffle=False, collate_fn=my_collate)
for domain in opt.all_domains:
if domain in opt.unlabeled_domains:
uset = unlabeled_sets[domain]
else:
# for labeled domains, consider which data to use as unlabeled set
if opt.unlabeled_data == 'both':
uset = ConcatDataset([train_sets[domain], unlabeled_sets[domain]])
elif opt.unlabeled_data == 'unlabeled':
uset = unlabeled_sets[domain]
elif opt.unlabeled_data == 'train':
uset = train_sets[domain]
else:
raise Exception(f'Unknown options for the unlabeled data usage: {opt.unlabeled_data}')
unlabeled_loaders[domain] = DataLoader(uset, opt.batch_size, shuffle=True, collate_fn=my_collate)
unlabeled_iters[domain] = iter(unlabeled_loaders[domain])
# models
F_s, F_d, C, D = None, None, None, None
if opt.model.lower() == 'cnn':
F_s = CNN(vocab, opt.F_layers, opt.shared_hidden_size, opt.kernel_num, opt.kernel_sizes, opt.dropout)
F_d = SCNN(vocab, opt.F_layers, opt.domain_hidden_size, opt.kernel_num, opt.kernel_sizes, opt.dropout)
else:
raise Exception(f'Unknown model architecture {opt.model}')
C = SentimentClassifier(opt.C_layers, opt.shared_hidden_size + opt.domain_hidden_size,
opt.shared_hidden_size + opt.domain_hidden_size, opt.num_labels,
opt.dropout, opt.C_bn)
D = DomainClassifier(opt.D_layers, opt.shared_hidden_size, opt.shared_hidden_size,
len(opt.all_domains), opt.dropout, opt.D_bn)
F_s, F_d, C, D = F_s.to(opt.device), F_d.to(opt.device), C.to(opt.device), D.to(opt.device)
# optimizers
params = [p for model in [F_s, C, F_d] if model for p in model.parameters()]
optimizer = optim.Adam(params, lr=opt.learning_rate)
optimizerD = optim.Adam(D.parameters(), lr=opt.D_learning_rate)
# training
best_acc, best_avg_acc = defaultdict(float), 0.0
for epoch in range(opt.max_epoch):
threshold = 0.5
# get pseudo_labels of unlabel data
pl_uset, pl_uset_loaders, pl_uset_iters = {}, {}, {}
for domain in opt.domains:
pl_uset[domain] = make_new_list(vocab, domain)
pl_uset_loaders[domain] = DataLoader(pl_uset[domain], opt.batch_size, shuffle=True, collate_fn=my_collate_pl)
pl_uset_iters[domain] = iter(pl_uset_loaders[domain])
F_s.train()
F_d.train()
C.train()
D.train()
# training accuracy
correct, total = defaultdict(int), defaultdict(int)
# D accuracy
d_correct, d_total = 0, 0
# conceptually view 1 epoch as 1 epoch of the first domain
num_iter = len(train_loaders[opt.domains[0]]) # num_iter = 175
# num_iter = len(unlabeled_iters[opt.domains[0]]) # num_iter = 175
for i in tqdm(range(num_iter)):
epoch_threshold = threshold
# D iterations
utils.freeze_net(F_s)
utils.freeze_net(F_d)
utils.freeze_net(C)
utils.unfreeze_net(D)
# WGAN n_critic trick since D trains slower
n_critic = opt.n_critic
if opt.wgan_trick:
if opt.n_critic>0 and ((epoch==0 and i<25) or i%500==0):
n_critic = 100
for _ in range(n_critic):
D.zero_grad()
loss_d = {}
# train on both labeled and unlabeled domains
for domain in opt.all_domains:
# targets not used
d_inputs, _ = utils.endless_get_next_batch(
unlabeled_loaders, unlabeled_iters, domain)
d_targets = utils.get_domain_label(domain, len(d_inputs[1]))
shared_feat = F_s(d_inputs)
d_outputs = D(shared_feat)
# D accuracy
_, pred = torch.max(d_outputs, 1)
d_total += len(d_inputs[1])
d_correct += (pred==d_targets).sum().item()
if opt.label_smooth is True:
# domain label smoothing
l_d = crossentropylabelsmooth(d_outputs, d_targets, opt.eps, alpha=0.2, reduction='True')
else:
l_d = functional.nll_loss(d_outputs, d_targets)
l_d.backward()
loss_d[domain] = l_d.item()
optimizerD.step()
# F&C iteration
utils.unfreeze_net(F_s)
utils.unfreeze_net(F_d)
utils.unfreeze_net(C)
utils.freeze_net(D)
if opt.fix_emb:
utils.freeze_net(F_s.word_emb)
utils.freeze_net(F_d.word_emb)
F_s.zero_grad()
F_d.zero_grad()
C.zero_grad()
for domain in opt.domains:
inputs, targets = utils.endless_get_next_batch(train_loaders, train_iters, domain)
targets = targets.to(opt.device)
shared_feat = F_s(inputs)
domain_feat = F_d(inputs)
features = torch.cat((shared_feat, domain_feat), dim=1)
c_outputs = C(features)
l_c = functional.nll_loss(c_outputs, targets)
# upload pseudo-label of unlabel data
inputs_tuple = utils.endless_get_next_batch_pl(pl_uset_loaders, pl_uset_iters, domain)
uninputs, plabels, gammas = inputs_tuple
weight_c = gammas
if domain is 'imdb':
epoch_threshold += 0.05
if domain is 'MR':
epoch_threshold += 0.05
weight_c[weight_c < epoch_threshold] = 0.0
un_shared_feat = F_s(uninputs)
un_domain_feat = F_d(uninputs)
un_features = torch.cat((un_shared_feat, un_domain_feat), dim=1)
un_c_outputs = C(un_features)
l_c_un = nll_loss(un_c_outputs, plabels, weight_c)
l_total = l_c + l_c_un * opt.lambd_rplr
l_total.backward(retain_graph=True)
_, pred = torch.max(c_outputs, 1)
total[domain] += targets.size(0)
correct[domain] += (pred == targets).sum().item()
# update F with D gradients on all domains
for domain in opt.all_domains:
d_inputs, _ = utils.endless_get_next_batch(
unlabeled_loaders, unlabeled_iters, domain)
shared_feat = F_s(d_inputs)
d_outputs = D(shared_feat)
d_targets = utils.get_domain_label(domain, len(d_inputs[1]))
l_d = functional.nll_loss(d_outputs, d_targets)
if opt.lambd > 0:
l_d *= -opt.lambd
l_d.backward()
optimizer.step()
# end of epoch
log.info('Ending epoch {}'.format(epoch+1))
if d_total > 0:
log.info('D Training Accuracy: {}%'.format(100.0*d_correct/d_total))
log.info('Training accuracy:')
log.info('\t'.join(opt.domains))
log.info('\t'.join([str(100.0*correct[d]/total[d]) for d in opt.domains]))
log.info('Evaluating validation sets:')
acc = {}
for domain in opt.dev_domains:
acc[domain] = evaluate(domain, dev_loaders[domain], F_s, F_d, C)
avg_acc = sum([acc[d] for d in opt.dev_domains]) / len(opt.dev_domains)
log.info(f'Average validation accuracy: {avg_acc}')
log.info('Evaluating test sets:')
test_acc = {}
for domain in opt.dev_domains:
test_acc[domain] = evaluate(domain, test_loaders[domain], F_s, F_d, C)
avg_test_acc = sum([test_acc[d] for d in opt.dev_domains]) / len(opt.dev_domains)
log.info(f'Average test accuracy: {avg_test_acc}')
if avg_acc > best_avg_acc:
log.info(f'New best average validation accuracy: {avg_acc}')
best_acc['valid'] = acc
best_acc['test'] = test_acc
best_avg_acc = avg_acc
with open(os.path.join(opt.model_save_file, 'options.pkl'), 'wb') as ouf:
pickle.dump(opt, ouf)
torch.save(F_s, '{}/netF_s.pkl'.format(opt.model_save_file))
torch.save(F_d, '{}/netF_d.pkl'.format(opt.model_save_file))
torch.save(C, '{}/netC.pkl'.format(opt.model_save_file))
torch.save(D, '{}/netD.pkl'.format(opt.model_save_file))
# end of training
log.info(f'Best average validation accuracy: {best_avg_acc}')
return best_acc
def nll_loss(output, label, weight):
one_hot_label = torch.zeros(output.size()).scatter_(1, label.cpu().view(-1, 1).long(), 1).cuda(opt.device)
nllloss = (-one_hot_label * output).sum(dim=1).to(opt.device)
weight = weight.to(opt.device)
return torch.sum(nllloss*weight)/(torch.sum(weight)+1e-10)
def Entropy(input_):
bs = input_.size(0)
epsilon = 1e-5
entropy = -input_ * torch.log(input_ + epsilon)
entropy = torch.sum(entropy, dim=1)
return entropy
def crossentropylabelsmooth(y_pred, y_true, eps, alpha=0.2, reduction='None'):
num_classes = y_pred.size(1)
if eps >= 0:
smooth_param = eps
else:
# Adaptive label smooth regularization
soft_label = functional.softmax(y_pred, dim=1)
smooth_param = alpha * soft_label[torch.arange(soft_label.size(0)), y_true].unsqueeze(1)
log_probs = y_pred
with torch.no_grad():
targets = torch.ones_like(log_probs)
targets *= smooth_param / (num_classes - 1)
targets.scatter_(1, y_true.data.unsqueeze(1), (1 - smooth_param))
loss = (-targets * log_probs).sum(dim=1)
with torch.no_grad():
non_zero_cnt = max(loss.nonzero(as_tuple=False).size(0), 1)
if reduction is not None:
loss = loss.sum() / non_zero_cnt
return loss
def evaluate(name, loader, F_s, F_d, C):
F_s.eval()
if F_d:
F_d.eval()
C.eval()
it = iter(loader)
correct = 0
total = 0
confusion = ConfusionMeter(opt.num_labels)
for inputs, targets in tqdm(it):
targets = targets.to(opt.device)
if not F_d:
# unlabeled domain
d_features = torch.zeros(len(targets), opt.domain_hidden_size).to(opt.device)
else:
d_features = F_d(inputs)
features = torch.cat((F_s(inputs), d_features), dim=1)
outputs = C(features)
_, pred = torch.max(outputs, 1)
confusion.add(pred.data, targets.data)
total += targets.size(0)
correct += (pred == targets).sum().item()
acc = correct / total
log.info('{}: Accuracy on {} samples: {}%'.format(name, total, 100.0*acc))
log.debug(confusion.conf)
return acc
def main():
if not os.path.exists(opt.model_save_file):
os.makedirs(opt.model_save_file)
vocab = Vocab(opt.emb_filename)
log.info(f'Loading {opt.dataset} Datasets...')
log.info(f'Domains: {opt.domains}')
train_sets, dev_sets, test_sets, unlabeled_sets = {}, {}, {}, {}
for domain in opt.domains:
train_sets[domain], dev_sets[domain], test_sets[domain], unlabeled_sets[domain] = \
get_fdu_mtl_datasets(vocab, opt.fdu_mtl_dir, domain, opt.max_seq_len)
opt.num_labels = FduMtlDataset.num_labels
log.info(f'Done Loading {opt.dataset} Datasets.')
cv = train(vocab, train_sets, dev_sets, test_sets, unlabeled_sets)
log.info(f'Training done...')
acc = sum(cv['valid'].values()) / len(cv['valid'])
log.info(f'Validation Set Domain Average\t{acc}')
test_acc = sum(cv['test'].values()) / len(cv['test'])
log.info(f'Test Set Domain Average\t{test_acc}')
return cv
if __name__ == '__main__':
main()