-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLSTM_FCN_Model.py
46 lines (37 loc) · 1.94 KB
/
LSTM_FCN_Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.contrib import rnn
class LSTM_FCN_Model:
def __init__(self, num_cells,x,weights,biases,strides):
self.num_cells = num_cells
self.x = x
self.weights = weights
self.biases = biases
self.strides = strides
pass
def LSTM_Model(self):
lstm = rnn.BasicLSTMCell(self.num_cells)
lstm = tf.nn.rnn_cell.DropoutWrapper(lstm,output_keep_prob=0.8)
outputs,states = rnn.static_rnn(lstm,self.x,dtype=tf.float32)
return outputs
def FCN_Model(self):
lstm = self.LSTM_Model()
self.x = tf.keras.layers.Permute((2,1))(self.x)
conv1_layer = tf.layers.Conv2D(self.x,filters=128,kernel_size=8,strides=1,kernel_initializer=tf.keras.initializers.he_uniform(),padding='same')
# conv1_layer = tf.nn.bias_add(conv1_layer,self.biases['conv1_b'])
conv1_layer = keras.layers.BatchNormalization()(conv1_layer)
conv1_layer = tf.nn.relu(conv1_layer)
# 第二层卷积层
conv2_layer = tf.layers.Conv2D(conv1_layer,filters=256,kernel_size=5,strides=1,kernel_initializer=tf.keras.initializers.he_uniform(),padding='same')
# conv2_layer = tf.nn.bias_add(conv2_layer,self.biases['conv2_b'])
conv2_layer = keras.layers.BatchNormalization()(conv2_layer)
conv2_layer = tf.nn.relu(conv2_layer)
# 第三层卷积层
conv3_layer = tf.layers.Conv2D(conv2_layer,filters=128,kernel_size=5,strides=1,kernel_initializer=tf.keras.initializers.he_uniform(),padding='same')
# conv3_layer = tf.nn.bias_add(conv3_layer,self.biases['conv3_b'])
conv3_layer = keras.layers.BatchNormalization()(conv3_layer)
conv3_layer = tf.nn.relu(conv3_layer)
# 全局池化
gap = keras.layers.GlobalAveragePooling2D()(conv3_layer)
out = tf.keras.layers.concatenate([lstm,gap])
logits = tf.keras.layers.Softmax(out)