forked from chrisgrimm/deep_abstract_q_network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dqn.py
222 lines (182 loc) · 7.76 KB
/
train_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import datetime
import numpy as np
import tqdm
import os
import atari
import dq_learner
import atari_dqn
import coin_game
import toy_mr
import wind_tunnel
import daqn
#import tabular_dqn
#import tabular_coin_game
# import daqn_clustering
# import dq_learner_priors
num_steps = 50000000
test_interval = 250000
test_frames = 125000
game_dir = './roms'
vis_update_interval = 10000
def evaluate_agent_reward(steps, env, agent, epsilon):
env.terminate_on_end_life = False
env.reset_environment()
total_reward = 0
episode_rewards = []
for i in tqdm.tqdm(range(steps)):
if env.is_current_state_terminal():
episode_rewards.append(total_reward)
total_reward = 0
env.reset_environment()
state = env.get_current_state()
if np.random.uniform(0, 1) < epsilon:
action = np.random.choice(env.get_actions_for_state(state))
else:
action = agent.get_action(state)
state, action, reward, next_state, is_terminal = env.perform_action(action)
total_reward += reward
if not episode_rewards:
episode_rewards.append(total_reward)
return episode_rewards
def train(agent, env, test_epsilon, results_dir):
# open results file
results_fn = '%s/%s_results.txt' % (results_dir, game)
if not os.path.isdir(results_dir):
os.mkdir(results_dir)
results_file = open(results_fn, 'w')
step_num = 0
steps_until_test = test_interval
steps_until_vis_update = 0
best_eval_reward = - float('inf')
while step_num < num_steps:
env.reset_environment()
env.terminate_on_end_life = True
start_time = datetime.datetime.now()
episode_steps, episode_reward = agent.run_learning_episode(env)
end_time = datetime.datetime.now()
step_num += episode_steps
print 'Steps:', step_num, '\tEpisode Reward:', episode_reward, '\tSteps/sec:', episode_steps / (
end_time - start_time).total_seconds(), '\tL1Eps:', agent.epsilon#, '\tL0Eps:', agent.l0_learner.epsilon
# print 'Steps:', step_num, '\tEpisode Reward:', episode_reward, '\tSteps/sec:', episode_steps / (
# end_time - start_time).total_seconds(), '\tEps:', agent.epsilon
steps_until_test -= episode_steps
if steps_until_test <= 0:
steps_until_test += test_interval
print 'Evaluating network...'
episode_rewards = evaluate_agent_reward(test_frames, env, agent, test_epsilon)
mean_reward = np.mean(episode_rewards)
if mean_reward > best_eval_reward:
best_eval_reward = mean_reward
agent.save_network('%s/%s_best_net.ckpt' % (results_dir, game))
print 'Mean Reward:', mean_reward, 'Best:', best_eval_reward
if getattr(env, 'get_discovered_rooms', None):
results_file.write('Step: %d -- Mean reward: %.2f -- Num Rooms: %s\n' % (step_num, mean_reward, len(env.get_discovered_rooms())))
else:
results_file.write('Step: %d -- Mean reward: %.2f\n' % (step_num, mean_reward))
results_file.flush()
# steps_until_vis_update -= episode_steps
# if steps_until_vis_update <= 0:
# steps_until_vis_update += vis_update_interval
# env.visualize_l1_states(agent.sigma_query_probs, agent.inp_frames, agent.inp_mask, agent.sess)
def train_dqn(env, num_actions):
results_dir = './results/dqn/coin_game'
training_epsilon = 0.1
test_epsilon = 0.05
frame_history = 4
dqn = atari_dqn.AtariDQN(frame_history, num_actions, shared_bias=False)
agent = dq_learner.DQLearner(dqn, num_actions, target_copy_freq=10000, epsilon_end=training_epsilon, double=False, frame_history=frame_history)
train(agent, env, test_epsilon, results_dir)
def train_tabular_dqn(env, num_actions):
results_dir = './results/dqn/tab_coin_game_lr0.0025_rp10000'
training_epsilon = 0.1
test_epsilon = 0.05
n = 3
frame_history = 1
dqn = tabular_dqn.TabularDQN(n, frame_history, num_actions, shared_bias=False)
agent = dq_learner.DQLearner(dqn, num_actions, target_copy_freq=3000, epsilon_end=training_epsilon,
double=False, frame_history=frame_history, learning_rate=0.0025,
replay_start_size=10000, epsilon_steps=100000., replay_memory_size=10001
)
train(agent, env, test_epsilon, results_dir)
def train_double_dqn(env, num_actions):
results_dir = './results/double_dqn/' + game
training_epsilon = 0.01
test_epsilon = 0.001
# frame_history = 4
frame_history = 1
dqn = atari_dqn.AtariDQN(frame_history, num_actions)
agent = dq_learner.DQLearner(dqn, num_actions, frame_history=frame_history, epsilon_end=training_epsilon)
train(agent, env, test_epsilon, results_dir)
def train_daqn(env, num_actions):
results_dir = './results/daqn/coin_game_with_base_dqn_diff_vis_trained_reward_fixed'
env.results_dir = results_dir
training_epsilon = 0.1
test_epsilon = 0.05
# agent = daqn.L1_Learner(2, num_actions, abstraction_function=env.abstraction, epsilon_end=training_epsilon)
agent = daqn.L1_Learner(2, num_actions, learning_rate=0.00001, epsilon_end=training_epsilon, base_network_file='./base_net.ckpt')
agent.l0_learner.epsilon = 0.1
train(agent, env, test_epsilon, results_dir)
#
# def train_daqn_priors(env, num_actions):
# results_dir = './results/daqn_priors/coin_game'
# env.results_dir = results_dir
#
# training_epsilon = 0.1
# test_epsilon = 0.05
#
# agent = daqn_clustering.L1_Learner(2, num_actions, epsilon_end=training_epsilon)
#
# train(agent, env, test_epsilon, results_dir)
#
# def train_dqn_priors(env, num_actions):
# results_dir = './results/priors/coin_game'
# env.results_dir = results_dir
#
# training_epsilon = 0.1
# test_epsilon = 0.05
#
# frame_history = 1
# dqn = dq_learner_priors.AtariDQN(frame_history, num_actions, shared_bias=False)
# agent = dq_learner_priors.DQLearner(dqn, num_actions, target_copy_freq=10000, epsilon_end=training_epsilon,
# frame_history=frame_history, restore_network_file='results/dqn/coin_game/coin_game_best_net.ckpt',
# epsilon_start=training_epsilon, replay_start_size=1000)
#
# train(agent, env, test_epsilon, results_dir)
def setup_atari_env():
# create Atari environment
env = atari.AtariEnvironment(game_dir + '/' + game + '.bin', use_gui=True)
num_actions = len(env.ale.getMinimalActionSet())
return env, num_actions
def setup_coin_env():
env = coin_game.CoinGame()
num_actions = 4
return env, num_actions
def setup_wind_tunnel_env():
env = wind_tunnel.WindTunnel()
num_actions = len(env.get_actions_for_state(None))
return env, num_actions
def setup_tabular_env():
env = tabular_coin_game.TabularCoinGame()
num_actions = len(env.get_actions_for_state(None))
return env, num_actions
def setup_toy_mr_env():
env = toy_mr.ToyMR('./mr_maps/full_mr_map.txt', abstraction_file='./mr_maps/full_mr_map_abs.txt', use_gui=True)
num_actions = len(env.get_actions_for_state(None))
return env, num_actions
def setup_four_rooms_env():
env = toy_mr.ToyMR('./mr_maps/four_rooms.txt', max_num_actions=10000)
num_actions = len(env.get_actions_for_state(None))
return env, num_actions
# game = 'freeway'
# train_dqn(*setup_atari_env())
# train_dqn(*setup_coin_env())
# game = 'toy_mr'
# train_double_dqn(*setup_toy_mr_env())
game = 'four_rooms'
train_double_dqn(*setup_four_rooms_env())
# train_daqn(*setup_coin_env())
# train_daqn_priors(*setup_coin_env())
# train_dqn_priors(*setup_coin_env())
#train_tabular_dqn(*setup_tabular_env())
# game = 'wind_tunnel'
# train_double_dqn(*setup_wind_tunnel_env())