forked from google-deepmind/dnc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
167 lines (136 loc) · 5.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Example script to train the DNC on a repeated copy task."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import sonnet as snt
import dnc
import repeat_copy
FLAGS = tf.flags.FLAGS
# Model parameters
tf.flags.DEFINE_integer("hidden_size", 64, "Size of LSTM hidden layer.")
tf.flags.DEFINE_integer("memory_size", 16, "The number of memory slots.")
tf.flags.DEFINE_integer("word_size", 16, "The width of each memory slot.")
tf.flags.DEFINE_integer("num_write_heads", 1, "Number of memory write heads.")
tf.flags.DEFINE_integer("num_read_heads", 4, "Number of memory read heads.")
tf.flags.DEFINE_integer("clip_value", 20,
"Maximum absolute value of controller and dnc outputs.")
# Optimizer parameters.
tf.flags.DEFINE_float("max_grad_norm", 50, "Gradient clipping norm limit.")
tf.flags.DEFINE_float("learning_rate", 1e-4, "Optimizer learning rate.")
tf.flags.DEFINE_float("optimizer_epsilon", 1e-10,
"Epsilon used for RMSProp optimizer.")
# Task parameters
tf.flags.DEFINE_integer("batch_size", 16, "Batch size for training.")
tf.flags.DEFINE_integer("num_bits", 4, "Dimensionality of each vector to copy")
tf.flags.DEFINE_integer(
"min_length", 1,
"Lower limit on number of vectors in the observation pattern to copy")
tf.flags.DEFINE_integer(
"max_length", 2,
"Upper limit on number of vectors in the observation pattern to copy")
tf.flags.DEFINE_integer("min_repeats", 1,
"Lower limit on number of copy repeats.")
tf.flags.DEFINE_integer("max_repeats", 2,
"Upper limit on number of copy repeats.")
# Training options.
tf.flags.DEFINE_integer("num_training_iterations", 100000,
"Number of iterations to train for.")
tf.flags.DEFINE_integer("report_interval", 100,
"Iterations between reports (samples, valid loss).")
tf.flags.DEFINE_string("checkpoint_dir", "/tmp/tf/dnc",
"Checkpointing directory.")
tf.flags.DEFINE_integer("checkpoint_interval", -1,
"Checkpointing step interval.")
def run_model(input_sequence, output_size):
"""Runs model on input sequence."""
access_config = {
"memory_size": FLAGS.memory_size,
"word_size": FLAGS.word_size,
"num_reads": FLAGS.num_read_heads,
"num_writes": FLAGS.num_write_heads,
}
controller_config = {
"hidden_size": FLAGS.hidden_size,
}
clip_value = FLAGS.clip_value
dnc_core = dnc.DNC(access_config, controller_config, output_size, clip_value)
initial_state = dnc_core.initial_state(FLAGS.batch_size)
output_sequence, _ = tf.nn.dynamic_rnn(
cell=dnc_core,
inputs=input_sequence,
time_major=True,
initial_state=initial_state)
return output_sequence
def train(num_training_iterations, report_interval):
"""Trains the DNC and periodically reports the loss."""
dataset = repeat_copy.RepeatCopy(FLAGS.num_bits, FLAGS.batch_size,
FLAGS.min_length, FLAGS.max_length,
FLAGS.min_repeats, FLAGS.max_repeats)
dataset_tensors = dataset()
output_logits = run_model(dataset_tensors.observations, dataset.target_size)
# Used for visualization.
output = tf.round(
tf.expand_dims(dataset_tensors.mask, -1) * tf.sigmoid(output_logits))
train_loss = dataset.cost(output_logits, dataset_tensors.target,
dataset_tensors.mask)
# Set up optimizer with global norm clipping.
trainable_variables = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(
tf.gradients(train_loss, trainable_variables), FLAGS.max_grad_norm)
global_step = tf.get_variable(
name="global_step",
shape=[],
dtype=tf.int64,
initializer=tf.zeros_initializer(),
trainable=False,
collections=[tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.GLOBAL_STEP])
optimizer = tf.train.RMSPropOptimizer(
FLAGS.learning_rate, epsilon=FLAGS.optimizer_epsilon)
train_step = optimizer.apply_gradients(
zip(grads, trainable_variables), global_step=global_step)
saver = tf.train.Saver()
if FLAGS.checkpoint_interval > 0:
hooks = [
tf.train.CheckpointSaverHook(
checkpoint_dir=FLAGS.checkpoint_dir,
save_steps=FLAGS.checkpoint_interval,
saver=saver)
]
else:
hooks = []
# Train.
with tf.train.SingularMonitoredSession(
hooks=hooks, checkpoint_dir=FLAGS.checkpoint_dir) as sess:
start_iteration = sess.run(global_step)
total_loss = 0
for train_iteration in xrange(start_iteration, num_training_iterations):
_, loss = sess.run([train_step, train_loss])
total_loss += loss
if (train_iteration + 1) % report_interval == 0:
dataset_tensors_np, output_np = sess.run([dataset_tensors, output])
dataset_string = dataset.to_human_readable(dataset_tensors_np,
output_np)
tf.logging.info("%d: Avg training loss %f.\n%s",
train_iteration, total_loss / report_interval,
dataset_string)
total_loss = 0
def main(unused_argv):
tf.logging.set_verbosity(3) # Print INFO log messages.
train(FLAGS.num_training_iterations, FLAGS.report_interval)
if __name__ == "__main__":
tf.app.run()