-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQuestion_4.py
158 lines (127 loc) · 5.07 KB
/
Question_4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import matplotlib
matplotlib.rcParams['mathtext.fontset'] = 'stix'
matplotlib.rcParams['font.family'] = 'STIXGeneral'
import matplotlib.pyplot as plt
import math
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from gillespie import *
def propensities(y, k0, k1):
return [k0, k1*y]
k0 = 0.2
k1 = 0.01
tspan = [0, 1000]
y0 = 0
transition_rules = [1, -1]
#%% Sample traces for cell division model
y0 = 0
fig2, ax2 = plt.subplots(figsize=(10,5))
cmap = plt.get_cmap("tab10")
division_time = 20*60
n_generations = 3
n_runs = 5
t2 = [0]*n_runs
y2 = [0]*n_runs
for i in range(n_runs):
(t2[i],y2[i]) = cell_partition(lambda y: propensities(y, k0, k1), transition_rules, division_time, n_generations, y0, segregation='independent')
if n_runs < 10:
ax2.plot(t2[i],y2[i],zorder=-1, linewidth = 0.2,c=cmap(i))
div_idx = np.where(t2[i] % division_time == 0)
#Plot scatter of points after division
ax2.scatter(t2[i][div_idx], y2[i][div_idx],marker='o',facecolors='none',edgecolors = cmap(i),zorder=2)
#Plot scatter of points before division
ax2.scatter(t2[i][np.subtract(div_idx,1)], y2[i][np.subtract(div_idx,1)],marker='o',facecolors='none',edgecolors=cmap(i),zorder=2)
if (100*i/n_runs) % 1 == 0:
print("\r{:.0f}%".format(100*(i+1)/n_runs),end='\r')
(t_avg, y_avg) = closest_mean(t2, y2, [0, division_time*n_generations], 1)
ax2.plot(t_avg, y_avg, zorder=1, c = 'tab:cyan')
ax2.set_xlabel("t/s")
ax2.set_ylabel("mRNA Count")
ax2.set_title("mRNA sample traces, average in cyan\n"+ 'Partitioning between sets of same-colour markers')
plt.show()
#%% Mean and Fano factor, with cell division
division_time = 20*60
n_generations = 1000
y0 = 10
(t,y) = cell_partition(lambda y: propensities(y, k0, k1), transition_rules, division_time, n_generations, y0, segregation='independent')
print("Mean = {:.2f}, variance = {:.2f}, Fano factor = {:.2f}".format(time_normalised_mean(t,y), time_normalised_var(t,y), time_normalised_var(t,y)/time_normalised_mean(t,y)))
generations = range(1,n_generations+1)
fano = np.zeros(n_generations)
mean = np.zeros(n_generations)
variance = np.zeros(n_generations)
partition_vals = []
partition_mean = np.zeros(n_generations)
partition_variance = np.zeros(n_generations)
partition_fano = np.zeros(n_generations)
for i in range(n_generations):
idx = int((i+1)*(len(y)-1)/(n_generations+1))
mean[i] = time_normalised_mean(t[0:idx],y[0:idx])
variance[i] = time_normalised_var(t[0:idx],y[0:idx])
fano[i] = variance[i]/mean[i]
partition_idx = t == division_time*i
partition_vals.append(y[partition_idx])
partition_mean[i] = np.mean(partition_vals)
partition_variance[i] = np.var(partition_vals)
partition_fano[i] = partition_variance[i]/partition_mean[i]
fig,[[ax1,ax2],[ax3,ax4],[ax5,ax6]]=plt.subplots(nrows=3,ncols=2,figsize=(7,5.5))
fig.suptitle(r'Statistic convergence as number of cell generations increases' + '\nLog and linear scales')
ax1.plot([1,n_generations],[mean[-1],mean[-1]],c='r')
ax1.plot(generations,mean)
ax1.set_xscale('log')
ax1.set_xlim([1,n_generations])
ax1.set_ylabel(r'Mean')
ax2.plot([1,n_generations],[mean[-1],mean[-1]],c='r')
ax2.plot(generations,mean)
ax2.set_xscale('linear')
ax2.set_xlim([1,n_generations])
ax3.plot([1,n_generations],[variance[-1],variance[-1]],c='r')
ax3.plot(generations,variance)
ax3.set_xscale('log')
ax3.set_xlim([1,n_generations])
ax3.set_ylabel('Variance')
ax4.plot([1,n_generations],[variance[-1],variance[-1]],c='r')
ax4.plot(generations,variance)
ax4.set_xscale('linear')
ax4.set_xlim([1,n_generations])
ax5.plot([1,n_generations],[fano[-1],fano[-1]],c='r')
ax5.plot(generations,fano)
ax5.set_xscale('log')
ax5.set_xlim([1,n_generations])
ax5.set_xlabel('Generations')
ax5.set_ylabel('Fano factor')
ax6.plot([1,n_generations],[fano[-1],fano[-1]],c='r')
ax6.plot(generations,fano)
ax6.set_xscale('linear')
ax6.set_xlim([1,n_generations])
ax6.set_xlabel('Generations')
fig2,[[ax7,ax8],[ax9,ax10],[ax11,ax12]]=plt.subplots(nrows=3,ncols=2,figsize=(7,5.5))
fig2.suptitle(r'Partition statistic convergence as number of cell generations increases' + '\nLog and linear scales')
ax7.plot([1,n_generations],[10,10],c='r')
ax7.plot(generations,partition_mean)
ax7.set_xscale('log')
ax7.set_xlim([1,n_generations])
ax7.set_ylabel(r'Partition mean')
ax8.plot([1,n_generations],[10,10],c='r')
ax8.plot(generations,partition_mean)
ax8.set_xscale('linear')
ax8.set_xlim([1,n_generations])
ax9.plot([1,n_generations],[10,10],c='r')
ax9.plot(generations,partition_variance)
ax9.set_xscale('log')
ax9.set_xlim([1,n_generations])
ax9.set_ylabel('Partition variance')
ax10.plot([1,n_generations],[10,10],c='r')
ax10.plot(generations,partition_variance)
ax10.set_xscale('linear')
ax10.set_xlim([1,n_generations])
ax11.plot([1,n_generations],[1,1],c='r')
ax11.plot(generations,partition_fano)
ax11.set_xscale('log')
ax11.set_xlim([1,n_generations])
ax11.set_xlabel('Generations')
ax11.set_ylabel('Partition Fano factor')
ax12.plot([1,n_generations],[1,1],c='r')
ax12.plot(generations,partition_fano)
ax12.set_xscale('linear')
ax12.set_xlim([1,n_generations])
ax12.set_xlabel('Generations')