-
Notifications
You must be signed in to change notification settings - Fork 140
/
run.py
64 lines (57 loc) · 3.06 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#! -*- coding:utf-8 -*-
from data_loader import data_generator, load_data
from model import E2EModel, Evaluate
from utils import extract_items, get_tokenizer, metric
import os, argparse
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
from keras import backend as K
if(K.backend() == 'tensorflow'):
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
parser = argparse.ArgumentParser(description='Model Controller')
parser.add_argument('--train', default=False, type=bool, help='to train the HBT model, python run.py --train=True')
parser.add_argument('--dataset', default='WebNLG', type=str, help='specify the dataset from ["NYT","WebNLG","ACE04","NYT10-HRL","NYT11-HRL","Wiki-KBP"]')
args = parser.parse_args()
if __name__ == '__main__':
# pre-trained bert model config
bert_model = 'cased_L-12_H-768_A-12'
bert_config_path = 'pretrained_bert_models/' + bert_model + '/bert_config.json'
bert_vocab_path = 'pretrained_bert_models/' + bert_model + '/vocab.txt'
bert_checkpoint_path = 'pretrained_bert_models/' + bert_model + '/bert_model.ckpt'
dataset = args.dataset
train_path = 'data/' + dataset + '/train_triples.json'
dev_path = 'data/' + dataset + '/dev_triples.json'
# test_path = 'data/' + dataset + '/test_split_by_num/test_triples_5.json' # ['1','2','3','4','5']
# test_path = 'data/' + dataset + '/test_split_by_type/test_triples_seo.json' # ['normal', 'seo', 'epo']
# test_path = 'data/' + dataset + '/test_triples.json' # overall test
rel_dict_path = 'data/' + dataset + '/rel2id.json'
save_weights_path = 'saved_weights/' + dataset + '/best_model.weights'
LR = 1e-5
tokenizer = get_tokenizer(bert_vocab_path)
train_data, dev_data, test_data, id2rel, rel2id, num_rels = load_data(train_path, dev_path, test_path, rel_dict_path)
subject_model, object_model, hbt_model = E2EModel(bert_config_path, bert_checkpoint_path, LR, num_rels)
if args.train:
BATCH_SIZE = 6
EPOCH = 100
MAX_LEN = 100
STEPS = len(train_data) // BATCH_SIZE
data_manager = data_generator(train_data, tokenizer, rel2id, num_rels, MAX_LEN, BATCH_SIZE)
evaluator = Evaluate(subject_model, object_model, tokenizer, id2rel, dev_data, save_weights_path)
hbt_model.fit_generator(data_manager.__iter__(),
steps_per_epoch=STEPS,
epochs=EPOCH,
callbacks=[evaluator]
)
else:
hbt_model.load_weights(save_weights_path)
test_result_path = 'results/' + dataset + '/test_result.json'
isExactMatch = True if dataset == 'Wiki-KBP' else False
if isExactMatch:
print("Exact Match")
else:
print("Partial Match")
precision, recall, f1_score = metric(subject_model, object_model, test_data, id2rel, tokenizer, isExactMatch, test_result_path)
print(f'{precision}\t{recall}\t{f1_score}')