Skip to content

Latest commit

 

History

History
53 lines (33 loc) · 2.94 KB

README.md

File metadata and controls

53 lines (33 loc) · 2.94 KB

Pattern-Matching Dynamic Memory Network for Dual-Mode Traffic Prediction

This is a PyTorch implementation of Pattern-Matching Dynamic Memory Network for Dual-Mode Traffic Prediction

PWC PWC PWC PWC PWC

Table of Contents

  • configs: training Configs and model configs for each dataset

  • lib: contains self-defined modules for our work, such as data loading, data pre-process, normalization, and evaluate metrics.

  • model: implementation of our model

  • data: contains relevant datasets

Requirements

Python 3.6.5, Pytorch 1.9.0, Numpy 1.16.3, argparse and configparser

Data Preparation

For convenience, we package these datasets used in our model in Google Drive.

Unzip the downloaded dataset files into the data folder.

Model Training

python run.py --datasets {DATASET_NAME} --type {MODEL_TYPE} --mode {MODE_NAME} 

Replace {DATASET_NAME} with one of datasets.

such as python run.py --dataset NYC-Taxi16

To run PM-DMNet with the desired configuration, set the type parameter accordingly:

  • Set type P to run PM-DMNet(P).
  • Set type R to run PM-DMNet(R).

There are two options for {MODE_NAME} : train and test

Selecting train will retrain the model and save the trained model parameters and records in the experiment folder.

With test selected, run.py will import the trained model parameters from {DATASET_NAME}.pth in the 'pre-trained' folder.

Here is an example of how to run the script using the specified parameters:

python run.py --dataset PEMSD8 --type P --mode train