-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfedprox.py
73 lines (56 loc) · 1.75 KB
/
fedprox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
"""
"""
from typing import Iterable, Union
from torch.nn.parameter import Parameter
from torch_ecg.utils import add_docstring
from ._register import register_optimizer
from .base import ProxSGD, ProxSGD_VR
__all__ = [
"FedProxOptimizer",
"FedProx_VR",
]
@register_optimizer()
class FedProxOptimizer(ProxSGD):
"""Local optimizer for ``FedProx`` using ``ProxSGD``.
The original implementation is in [1]_, [2]_.
Parameters
----------
params : Iterable[dict] or Iterable[torch.nn.parameter.Parameter]
The parameters to optimize or dicts defining parameter groups.
lr : float, default: 1e-3
Learning rate.
mu : float, default 0.1
Coeff. of the proximal term.
References
----------
.. [1] https://github.com/litian96/FedProx/blob/master/flearn/optimizer/pgd.py
.. [2] https://github.com/litian96/FedProx/blob/master/flearn/optimizer/pggd.py
.. note::
The ``gold`` [2]_ is not re-implemented yet.
"""
__name__ = "FedProxOptimizer"
def __init__(
self,
params: Iterable[Union[dict, Parameter]],
lr: float = 1e-3,
mu: float = 1e-2,
) -> None:
self.mu = mu
super().__init__(params, lr=lr, prox=mu, momentum=0)
@register_optimizer()
@add_docstring(
FedProxOptimizer.__doc__.replace(
"Local optimizer for ``FedProx`` using ``ProxSGD``.",
"Local optimizer for ``FedProx`` using ``ProxSGD`` with variance reduction.",
)
)
class FedProx_VR(ProxSGD_VR):
__name__ = "FedProx_VR"
def __init__(
self,
params: Iterable[Union[dict, Parameter]],
lr: float = 1e-3,
mu: float = 1e-2,
) -> None:
self.mu = mu
super().__init__(params, lr=lr, prox=mu, momentum=0)