-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaaa (1).py
41 lines (35 loc) · 1.29 KB
/
aaa (1).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load model and tokenizer
model_name = "Qwen/Qwen2.5-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto", # Automatically choose float32 or float16 based on device
device_map="auto" # Automatically map layers to available devices (e.g., GPU)
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Define prompt and messages
prompt = "Who is Napoleon Bonaparte?"
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
# Prepare inputs for the model
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate output from the model
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
# Post-process generated output
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Print the response from the model
print(response)