-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathskLearnWrapper.py
215 lines (170 loc) · 7.79 KB
/
skLearnWrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import sys
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
from scipy.sparse import csr_matrix
from scipy.sparse import hstack
from sklearn.feature_selection import VarianceThreshold
from django.utils.encoding import smart_str
class LabelEncoder():
def __init__(self):
pass
def fit_transform(self, column):
column = column.tolist()
labelSet = set(column)
self.labelDict = {label : (i + 1) for i, label in enumerate(labelSet)}
column = [self.labelDict[label] for label in column]
return np.array(column)
def transform(self, column):
column = column.tolist()
column = [self.labelDict[label] if label in self.labelDict else 0 for label in column]
return np.array(column)
def getLabelSize(self):
return len(self.labelDict)
class DummyEncoder():
def __init__(self):
pass
def fit_transform(self, featureName, feature):
if len(feature) == 0 or len(feature[0]) == 0:
return [], np.array(feature)
nCol = len(feature[0])
self.nCol = nCol
feature = np.array(feature)
self.labelEncoders = [LabelEncoder() for i in range(nCol)]
for idx in range(nCol):
feature[:, idx] = self.labelEncoders[idx].fit_transform(feature[:, idx])
nLabels = [labelEncoder.getLabelSize() + 1 for labelEncoder in self.labelEncoders]
self.oneHotEncoder = OneHotEncoder(n_values = nLabels)
feature = self.oneHotEncoder.fit_transform(feature)
featureIndices = self.oneHotEncoder.feature_indices_
newName = ['unknown'] * feature.shape[1]
for i in range(nCol):
startIdx = featureIndices[i]
endIdx = featureIndices[i + 1] - 1
for idx in range(startIdx, endIdx + 1):
newName[idx] = featureName[i]
return newName, feature
def transform(self, feature):
if len(feature) == 0 or len(feature[0]) == 0:
return np.array(feature)
nCol = len(feature[0])
assert nCol == self.nCol, 'column size does not match'
feature = np.array(feature)
for idx in range(nCol):
feature[:, idx] = self.labelEncoders[idx].transform(feature[:, idx])
feature = self.oneHotEncoder.transform(feature)
return feature
class TextEncoder():
def __init__(self):
self.vects = []
def fit_transform(self, featureName, feature):
if len(feature) == 0 or len(feature[0]) == 0:
return [], csr_matrix(feature)
self.nCol = len(feature[0])
self.vects = [TfidfVectorizer(min_df=2) for i in range(self.nCol)]
sparseMat = None
newName = []
for idx in range(self.nCol):
column = [x[idx] for x in feature]
columnName = featureName[idx]
vect = self.vects[idx]
docMat = vect.fit_transform(column)
words = vect.get_feature_names()
newName.extend([columnName + ':' + word for word in words])
if sparseMat is None:
sparseMat = docMat
else:
sparseMat = hstack([sparseMat, docMat])
return newName, sparseMat
def transform(self, feature):
assert self.nCol == len(feature[0]), "column size does not match"
if len(feature) == 0 or len(feature[0]) == 0:
return csr_matrix(feature)
sparseMat = None
for idx in range(self.nCol):
column = [x[idx] for x in feature]
vect = self.vects[idx]
if sparseMat is None:
sparseMat = vect.transform(column)
else:
sparseMat = hstack([sparseMat, vect.transform(column)])
return sparseMat
class SkLearnWrapper:
CLF_SGD = 'SGDClassifier'
CLF_LSVC = 'LinearSVC'
def __init__(self, clfName, textFeatureName, cateFeatureName, numericFeatureName):
self.textEncoder = TextEncoder()
self.dummyEncoder = DummyEncoder()
self.scaler = StandardScaler()
self.varSelector = VarianceThreshold()
self.textFeatureName = textFeatureName
self.cateFeatureName = cateFeatureName
self.numericFeatureName = numericFeatureName
if clfName == SkLearnWrapper.CLF_SGD:
self.clf = SGDClassifier(alpha=.0001, n_iter=50)
elif clfName == SkLearnWrapper.CLF_LSVC:
self.clf = LinearSVC(loss='l2', dual=False, tol=1e-3)
def fitTransFeature(self, textFeature, cateFeature, numericFeature):
sys.stderr.write("fit_transform text feature...")
self.textFeatureName, textFeature = self.textEncoder.fit_transform(self.textFeatureName, textFeature)
sys.stderr.write("categorical feature...")
self.cateFeatureName, cateFeature = self.dummyEncoder.fit_transform(self.cateFeatureName, cateFeature)
sys.stderr.write("numeric feature...")
numericFeature = self.scaler.fit_transform(numericFeature)
sys.stderr.write("hstack all feature\n")
numericFeature = csr_matrix(numericFeature)
cateFeature = csr_matrix(cateFeature)
feature = [x for x in [numericFeature, cateFeature, textFeature] if x.shape[1] > 0]
feature = hstack(feature)
self.featureName = self.numericFeatureName + self.cateFeatureName + self.textFeatureName
return feature
def transFeature(self, textFeature, cateFeature, numericFeature):
sys.stderr.write("transform text feature...")
textFeature = self.textEncoder.transform(textFeature)
sys.stderr.write("categorical feature...")
cateFeature = self.dummyEncoder.transform(cateFeature)
sys.stderr.write("numeric feature...")
numericFeature = self.scaler.transform(numericFeature)
sys.stderr.write("hstack all feature\n")
numericFeature = csr_matrix(numericFeature)
cateFeature = csr_matrix(cateFeature)
feature = [x for x in [numericFeature, cateFeature, textFeature] if x.shape[1] > 0]
feature = hstack(feature)
return feature
def selectFitTransFeature(self, feature):
sys.stderr.write('SELECT fit_transform feature\n')
feature = self.varSelector.fit_transform(feature)
featureMasks = self.varSelector.get_support()
assert len(self.featureName) == len(featureMasks)
self.featureName = [name for (name, isTrue) in zip(self.featureName, featureMasks) if isTrue]
return feature
def selectTransFeature(self, feature):
sys.stderr.write('SELECT transform feature\n')
feature = self.varSelector.transform(feature)
return feature
def fit(self, labels, textFeature, cateFeature, numericFeature):
# feature trasformation
feature = self.fitTransFeature(textFeature, cateFeature, numericFeature)
# feature selection
feature = self.selectFitTransFeature(feature)
# train models
self.clf.fit(feature, labels)
def predict(self, textFeature, cateFeature, numericFeature):
# feature trasformation
feature = self.transFeature(textFeature, cateFeature, numericFeature)
# feature selection
feature = self.selectTransFeature(feature)
# prediction
preds = self.clf.predict(feature)
return preds
def getFeatureWeight(self):
if hasattr(self.clf, 'coef_'):
weights = self.clf.coef_.tolist()[0]
assert len(self.featureName) == len(weights)
self.featureName = [smart_str(name) for name in self.featureName]
nameWeights = zip(self.featureName, weights)
nameWeights = sorted(nameWeights, key = lambda nameWeight : -nameWeight[1])
return nameWeights