-
Notifications
You must be signed in to change notification settings - Fork 10
Matrix Square Root
william-dawson edited this page Jun 16, 2017
·
2 revisions
The Square Root module allows you to compute either a matrix square root, or the inverse square root of a matrix.
f(A) = A^\frac{1}{2}
f(A) = A^{-\frac{1}{2}}
This functionality is based on a coupled Newton-Schultz iteration. Here is an example of how it might be implemented.
def ComputeSqrt(InputMatrix):
matrix_dimension = InputMatrix.shape[0]
identity_matrix = scipy.sparse.identity(matrix_dimension)
min_val, max_val = Helper.EigenCircle(InputMatrix)
lamda = 2.0/(max_val+min_val)
Yk = InputMatrix.copy()
Zk = identity_matrix.copy()
for i in range(0,1000):
Xk = lamda*Yk.dot(Zk)
Tk = 0.5*(3.0*identity_matrix - Xk)
Ykplusone = Tk.dot(Yk)
norm_value = scipy.sparse.linalg.norm(Yk - Ykplusone)
Zk = Zk.dot(Tk)
Yk = Ykplusone.copy()
if (norm_value < 1e-10):
break
return_mat = math.sqrt(lamda)*Yk
inverse_return_mat = math.sqrt(lamda)*Zk
Please cite the paper of Jansik if you use this module.
@article{jansik2007linear, title={Linear-scaling symmetric square-root decomposition of the overlap matrix}, author={Jans{\'\i}k, Branislav and H{\o}st, Stinne and J{\o}rgensen, Poul and Olsen, Jeppe and Helgaker, Trygve}, journal={The Journal of chemical physics}, volume={126}, number={12}, pages={124104}, year={2007}, publisher={AIP} }