-
Notifications
You must be signed in to change notification settings - Fork 10
Sign Function
william-dawson edited this page Jun 16, 2017
·
2 revisions
This matrix sign module allows you to compute the sign of a matrix.
Sign(A) = A(A^2)^{-\frac{1}{2}}
This functionality is based on Newton-Schultz iteration.
def Compute(InputMatrix):
matrix_dimension = InputMatrix.shape[0]
identity_matrix = scipy.sparse.identity(matrix_dimension)
min_val, max_val = Helper.EigenCircle(InputMatrix)
MatXk = (1.0/max_val)*InputMatrix
xk = min_val/max_val
coeff = [-0.5,0,1.5,-0.1]
roots = numpy.roots(coeff)
alpha = 0.0
for r in roots:
if r > 1.0 and r < math.sqrt(3):
alpha = r
for i in range(0,100):
ak = min(math.sqrt(3.0/(1.0+xk+xk**2)),alpha)
MatXkplus1 = 0.5*ak*MatXk.dot(3.0*identity_matrix-(ak**2)*MatXk.dot(MatXk))
xk = 0.5*ak*xk*(3.0-(ak**2)*xk**2)
check_value = scipy.sparse.linalg.norm(MatXkplus1-MatXk)
MatXk = MatXkplus1
if check_value < 1e-8:
break
return MatXk
Please cite the book of Higham if you use this module.
@misc{nicholas2008functions, title={Functions of matrices: theory and computation}, author={Nicholas, J Higham}, year={2008}, publisher={SIAM} }
If you use this module for electronic structure calculations, you should also give credit to the following sources:
@article{nemeth2000linear, title={Linear scaling density matrix search based on sign matrices}, author={N{\'e}meth, K{\'a}roly and Scuseria, Gustavo E}, journal={The Journal of Chemical Physics}, volume={113}, number={15}, pages={6035--6041}, year={2000}, publisher={AIP} } @article{vandevondele2012linear, title={Linear scaling self-consistent field calculations with millions of atoms in the condensed phase}, author={VandeVondele, Joost and Borstnik, Urban and Hutter, Jürg}, journal={Journal of chemical theory and computation}, volume={8}, number={10}, pages={3565--3573}, year={2012}, publisher={ACS Publications} }