-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.go
116 lines (98 loc) · 3.76 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
// Copyright 2021-2023, Matthew Winter
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package main
import (
"flag"
"fmt"
"os"
"path/filepath"
"time"
"github.com/rs/zerolog"
)
var logger zerolog.Logger
var applicationText = "%s 0.2.1%s"
var copyrightText = "Copyright 2022-2023, Matthew Winter\n"
var indent = "..."
var helpText = `
A command line application designed to recursively walk through the input path
submitting all image files for optical character recognition (OCR) via either
the Google Cloud Vision API or a Google Cloud Document AI processor if a
prediction endpoint is provided. The application will then output the image
information and annotations to a single newline delimited JSON File.
Use --help for more details.
USAGE:
ocr-runner -i PATH -o FILE
ARGS:
`
func main() {
flag.Usage = func() {
fmt.Fprintf(os.Stderr, applicationText, filepath.Base(os.Args[0]), "\n")
fmt.Fprint(os.Stderr, copyrightText)
fmt.Fprint(os.Stderr, helpText)
flag.PrintDefaults()
}
// Define the Long CLI flag names
var inputPath = flag.String("i", "", "Input Path (Required)")
var outputFile = flag.String("o", "", "Output File (Required)")
var outputFull = flag.Bool("full", false, "Output full details to JSON")
var predictionEndpoint = flag.String("endpoint", "", "Document AI Prediction Endpoint (Optional)")
var verbose = flag.Bool("verbose", false, "Display verbose or debug detail")
// Parse the flags
flag.Parse()
// Validate the Required Flags
if *inputPath == "" || *outputFile == "" {
flag.Usage()
os.Exit(1)
}
// Setup Zero Log for Consolo Output
output := zerolog.ConsoleWriter{Out: os.Stderr, TimeFormat: time.RFC3339}
logger = zerolog.New(output).With().Timestamp().Logger()
zerolog.TimeFieldFormat = "2006-01-02 15:04:05.000"
zerolog.DurationFieldUnit = time.Millisecond
zerolog.DurationFieldInteger = true
if *verbose {
zerolog.SetGlobalLevel(zerolog.DebugLevel)
} else {
zerolog.SetGlobalLevel(zerolog.InfoLevel)
}
// Output Header
logger.Info().Msgf(applicationText, filepath.Base(os.Args[0]), "")
logger.Info().Msg("Arguments")
logger.Info().Str("Input Path", *inputPath).Msg(indent)
logger.Info().Str("Output File", *outputFile).Msg(indent)
logger.Info().Bool("Output Full Details", *outputFull).Msg(indent)
logger.Info().Str("Document AI Prediction Endpoint", *predictionEndpoint).Msg(indent)
logger.Info().Msg("Begin")
// Walk the provided input path and populate a list of images in preparation for OCR
var imageFiles ImageFiles
err := imageFiles.PopulateImages(*inputPath)
if err != nil {
logger.Error().Err(err).Msg("Failed to populate images list from provided input path")
os.Exit(1)
}
// Check that we did find images to process
if len(imageFiles.Images) == 0 {
logger.Error().Msg("No image files found, check the input path provided")
os.Exit(1)
}
logger.Info().Int("Image Count", len(imageFiles.Images)).Msg("Populating image file list complete")
// Iterate through the image file list and call the Vision API to detect the text
// Writing out the image information and annotations in JSON format to a file
err = imageFiles.DetectImageText(*outputFile, *outputFull, *predictionEndpoint)
if err != nil {
logger.Error().Err(err).Msg("Image text detection failed")
os.Exit(1)
}
logger.Info().Msg("End")
}