Skip to content

wiseodd/laplace-bayesopt

Repository files navigation

Bayesian Optimization Interface for laplace-torch

Installation

Install PyTorch first, then:

pip install --upgrade laplace-bayesopt

Usage

Basic usage

from laplace_bayesopt.botorch import LaplaceBoTorch

def get_net():
    # Return a *freshly-initialized* PyTorch model
    return torch.nn.Sequential(
        ...
    )

# Initial X, Y pairs, e.g. obtained via random search
train_X, train_Y = ..., ...

model = LaplaceBoTorch(get_net, train_X, train_Y)

# Use this model in your existing BoTorch loop, e.g. to replace BoTorch's SingleTaskGP model.

The full arguments of LaplaceBoTorch can be found in the class documentation.

Check out examples in examples/.

Useful References

Citation

@inproceedings{kristiadi2023promises,
  title={Promises and Pitfalls of the Linearized {L}aplace in {B}ayesian Optimization},
  author={Kristiadi, Agustinus and Immer, Alexander and Eschenhagen, Runa and Fortuin, Vincent},
  booktitle={AABI},
  year={2023}
}

About

Laplace approximated BNN surrogate for BoTorch

Resources

Stars

Watchers

Forks

Packages

No packages published