-
Notifications
You must be signed in to change notification settings - Fork 78
/
main.py
436 lines (386 loc) · 21 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
"""
Author: Wouter Van Gansbeke
Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
"""
import argparse
import numpy as np
import os
import sys
import time
import shutil
import glob
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.optim
import Models
import Datasets
import warnings
import random
from datetime import datetime
from Loss.loss import define_loss, allowed_losses, MSE_loss
from Loss.benchmark_metrics import Metrics, allowed_metrics
from Datasets.dataloader import get_loader
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
from Utils.utils import str2bool, define_optim, define_scheduler, \
Logger, AverageMeter, first_run, mkdir_if_missing, \
define_init_weights, init_distributed_mode
# Training setttings
parser = argparse.ArgumentParser(description='KITTI Depth Completion Task')
parser.add_argument('--dataset', type=str, default='kitti', choices=Datasets.allowed_datasets(), help='dataset to work with')
parser.add_argument('--nepochs', type=int, default=100, help='Number of epochs for training')
parser.add_argument('--thres', type=int, default=0, help='epoch for pretraining')
parser.add_argument('--start_epoch', type=int, default=0, help='Start epoch number for training')
parser.add_argument('--mod', type=str, default='mod', choices=Models.allowed_models(), help='Model for use')
parser.add_argument('--batch_size', type=int, default=7, help='batch size')
parser.add_argument('--val_batch_size', default=None, help='batch size selection validation set')
parser.add_argument('--learning_rate', metavar='lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--no_cuda', action='store_true', help='no gpu usage')
parser.add_argument('--evaluate', action='store_true', help='only evaluate')
parser.add_argument('--resume', type=str, default='', help='resume latest saved run')
parser.add_argument('--nworkers', type=int, default=8, help='num of threads')
parser.add_argument('--nworkers_val', type=int, default=0, help='num of threads')
parser.add_argument('--no_dropout', action='store_true', help='no dropout in network')
parser.add_argument('--subset', type=int, default=None, help='Take subset of train set')
parser.add_argument('--input_type', type=str, default='rgb', choices=['depth','rgb'], help='use rgb for rgbdepth')
parser.add_argument('--side_selection', type=str, default='', help='train on one specific stereo camera')
parser.add_argument('--no_tb', type=str2bool, nargs='?', const=True,
default=True, help="use mask_gt - mask_input as final mask for loss calculation")
parser.add_argument('--test_mode', action='store_true', help='Do not use resume')
parser.add_argument('--pretrained', type=str2bool, nargs='?', const=True, default=True, help='use pretrained model')
parser.add_argument('--load_external_mod', type=str2bool, nargs='?', const=True, default=False, help='path to external mod')
# Data augmentation settings
parser.add_argument('--crop_w', type=int, default=1216, help='width of image after cropping')
parser.add_argument('--crop_h', type=int, default=256, help='height of image after cropping')
parser.add_argument('--max_depth', type=float, default=85.0, help='maximum depth of LIDAR input')
parser.add_argument('--sparse_val', type=float, default=0.0, help='value to endode sparsity with')
parser.add_argument("--rotate", type=str2bool, nargs='?', const=True, default=False, help="rotate image")
parser.add_argument("--flip", type=str, default='hflip', help="flip image: vertical|horizontal")
parser.add_argument("--rescale", type=str2bool, nargs='?', const=True,
default=False, help="Rescale values of sparse depth input randomly")
parser.add_argument("--normal", type=str2bool, nargs='?', const=True, default=False, help="normalize depth/rgb input")
parser.add_argument("--no_aug", type=str2bool, nargs='?', const=True, default=False, help="rotate image")
# Paths settings
parser.add_argument('--save_path', default='Saved/', help='save path')
parser.add_argument('--data_path', required=True, help='path to desired dataset')
# Optimizer settings
parser.add_argument('--optimizer', type=str, default='adam', help='adam or sgd')
parser.add_argument('--weight_init', type=str, default='kaiming', help='normal, xavier, kaiming, orhtogonal weights initialisation')
parser.add_argument('--weight_decay', type=float, default=0, help='L2 weight decay/regularisation on?')
parser.add_argument('--lr_decay', action='store_true', help='decay learning rate with rule')
parser.add_argument('--niter', type=int, default=50, help='# of iter at starting learning rate')
parser.add_argument('--niter_decay', type=int, default=400, help='# of iter to linearly decay learning rate to zero')
parser.add_argument('--lr_policy', type=str, default=None, help='{}learning rate policy: lambda|step|plateau')
parser.add_argument('--lr_decay_iters', type=int, default=7, help='multiply by a gamma every lr_decay_iters iterations')
parser.add_argument('--clip_grad_norm', type=int, default=0, help='performs gradient clipping')
parser.add_argument('--gamma', type=float, default=0.5, help='factor to decay learning rate every lr_decay_iters with')
# Loss settings
parser.add_argument('--loss_criterion', type=str, default='mse', choices=allowed_losses(), help="loss criterion")
parser.add_argument('--print_freq', type=int, default=10000, help="print every x iterations")
parser.add_argument('--save_freq', type=int, default=100000, help="save every x interations")
parser.add_argument('--metric', type=str, default='rmse', choices=allowed_metrics(), help="metric to use during evaluation")
parser.add_argument('--metric_1', type=str, default='mae', choices=allowed_metrics(), help="metric to use during evaluation")
parser.add_argument('--wlid', type=float, default=0.1, help="weight base loss")
parser.add_argument('--wrgb', type=float, default=0.1, help="weight base loss")
parser.add_argument('--wpred', type=float, default=1, help="weight base loss")
parser.add_argument('--wguide', type=float, default=0.1, help="weight base loss")
# Cudnn
parser.add_argument("--cudnn", type=str2bool, nargs='?', const=True,
default=True, help="cudnn optimization active")
parser.add_argument('--gpu_ids', default='1', type=str, help='gpu device ids for CUDA_VISIBLE_DEVICES')
parser.add_argument("--multi", type=str2bool, nargs='?', const=True,
default=False, help="use multiple gpus")
parser.add_argument("--seed", type=str2bool, nargs='?', const=True,
default=True, help="use seed")
parser.add_argument("--use_disp", type=str2bool, nargs='?', const=True,
default=False, help="regress towards disparities")
parser.add_argument('--num_samples', default=0, type=int, help='number of samples')
# distributed training
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--local_rank', dest="local_rank", default=0, type=int)
def main():
global args
args = parser.parse_args()
if args.num_samples == 0:
args.num_samples = None
if args.val_batch_size is None:
args.val_batch_size = args.batch_size
if args.seed:
random.seed(args.seed)
torch.manual_seed(args.seed)
# torch.backends.cudnn.deterministic = True
# warnings.warn('You have chosen to seed training. '
# 'This will turn on the CUDNN deterministic setting, '
# 'which can slow down your training considerably! '
# 'You may see unexpected behavior when restarting from checkpoints.')
# For distributed training
# init_distributed_mode(args)
if not args.no_cuda and not torch.cuda.is_available():
raise Exception("No gpu available for usage")
torch.backends.cudnn.benchmark = args.cudnn
# Init model
channels_in = 1 if args.input_type == 'depth' else 4
model = Models.define_model(mod=args.mod, in_channels=channels_in, thres=args.thres)
define_init_weights(model, args.weight_init)
# Load on gpu before passing params to optimizer
if not args.no_cuda:
if not args.multi:
model = model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
# model.cuda()
# model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
# model = model.module
save_id = '{}_{}_{}_{}_{}_batch{}_pretrain{}_wlid{}_wrgb{}_wguide{}_wpred{}_patience{}_num_samples{}_multi{}'.\
format(args.mod, args.optimizer, args.loss_criterion,
args.learning_rate,
args.input_type,
args.batch_size,
args.pretrained, args.wlid, args.wrgb, args.wguide, args.wpred,
args.lr_decay_iters, args.num_samples, args.multi)
# INIT optimizer/scheduler/loss criterion
optimizer = define_optim(args.optimizer, model.parameters(), args.learning_rate, args.weight_decay)
scheduler = define_scheduler(optimizer, args)
# Optional to use different losses
criterion_local = define_loss(args.loss_criterion)
criterion_lidar = define_loss(args.loss_criterion)
criterion_rgb = define_loss(args.loss_criterion)
criterion_guide = define_loss(args.loss_criterion)
# INIT dataset
dataset = Datasets.define_dataset(args.dataset, args.data_path, args.input_type, args.side_selection)
dataset.prepare_dataset()
train_loader, valid_loader, valid_selection_loader = get_loader(args, dataset)
# Resume training
best_epoch = 0
lowest_loss = np.inf
args.save_path = os.path.join(args.save_path, save_id)
mkdir_if_missing(args.save_path)
log_file_name = 'log_train_start_0.txt'
args.resume = first_run(args.save_path)
if args.resume and not args.test_mode and not args.evaluate:
path = os.path.join(args.save_path, 'checkpoint_model_epoch_{}.pth.tar'.format(int(args.resume)))
if os.path.isfile(path):
log_file_name = 'log_train_start_{}.txt'.format(args.resume)
# stdout
sys.stdout = Logger(os.path.join(args.save_path, log_file_name))
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(path)
args.start_epoch = checkpoint['epoch']
lowest_loss = checkpoint['loss']
best_epoch = checkpoint['best epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
log_file_name = 'log_train_start_0.txt'
# stdout
sys.stdout = Logger(os.path.join(args.save_path, log_file_name))
print("=> no checkpoint found at '{}'".format(path))
# Only evaluate
elif args.evaluate:
print("Evaluate only")
best_file_lst = glob.glob(os.path.join(args.save_path, 'model_best*'))
if len(best_file_lst) != 0:
best_file_name = best_file_lst[0]
print(best_file_name)
if os.path.isfile(best_file_name):
sys.stdout = Logger(os.path.join(args.save_path, 'Evaluate.txt'))
print("=> loading checkpoint '{}'".format(best_file_name))
checkpoint = torch.load(best_file_name)
model.load_state_dict(checkpoint['state_dict'])
else:
print("=> no checkpoint found at '{}'".format(best_file_name))
else:
print("=> no checkpoint found at due to empy list in folder {}".format(args.save_path))
validate(valid_selection_loader, model, criterion_lidar, criterion_rgb, criterion_local, criterion_guide)
return
# Start training from clean slate
else:
# Redirect stdout
sys.stdout = Logger(os.path.join(args.save_path, log_file_name))
# INIT MODEL
print(40*"="+"\nArgs:{}\n".format(args)+40*"=")
print("Init model: '{}'".format(args.mod))
print("Number of parameters in model {} is {:.3f}M".format(args.mod.upper(), sum(tensor.numel() for tensor in model.parameters())/1e6))
# Load pretrained state for cityscapes in GLOBAL net
if args.pretrained and not args.resume:
if not args.load_external_mod:
if not args.multi:
target_state = model.depthnet.state_dict()
else:
target_state = model.module.depthnet.state_dict()
check = torch.load('erfnet_pretrained.pth')
for name, val in check.items():
# Exclude multi GPU prefix
mono_name = name[7:]
if mono_name not in target_state:
continue
try:
target_state[mono_name].copy_(val)
except RuntimeError:
continue
print('Successfully loaded pretrained model')
else:
check = torch.load('external_mod.pth.tar')
lowest_loss_load = check['loss']
target_state = model.state_dict()
for name, val in check['state_dict'].items():
if name not in target_state:
continue
try:
target_state[name].copy_(val)
except RuntimeError:
continue
print("=> loaded EXTERNAL checkpoint with best rmse {}"
.format(lowest_loss_load))
# Start training
for epoch in range(args.start_epoch, args.nepochs):
print("\n => Start EPOCH {}".format(epoch + 1))
print(datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
print(args.save_path)
# Adjust learning rate
if args.lr_policy is not None and args.lr_policy != 'plateau':
scheduler.step()
lr = optimizer.param_groups[0]['lr']
print('lr is set to {}'.format(lr))
# Define container objects
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
score_train = AverageMeter()
score_train_1 = AverageMeter()
metric_train = Metrics(max_depth=args.max_depth, disp=args.use_disp, normal=args.normal)
# Train model for args.nepochs
model.train()
# compute timing
end = time.time()
# Load dataset
for i, (input, gt) in tqdm(enumerate(train_loader)):
# Time dataloader
data_time.update(time.time() - end)
# Put inputs on gpu if possible
if not args.no_cuda:
input, gt = input.cuda(), gt.cuda()
prediction, lidar_out, precise, guide = model(input, epoch)
loss = criterion_local(prediction, gt)
loss_lidar = criterion_lidar(lidar_out, gt)
loss_rgb = criterion_rgb(precise, gt)
loss_guide = criterion_guide(guide, gt)
loss = args.wpred*loss + args.wlid*loss_lidar + args.wrgb*loss_rgb + args.wguide*loss_guide
losses.update(loss.item(), input.size(0))
metric_train.calculate(prediction[:, 0:1].detach(), gt.detach())
score_train.update(metric_train.get_metric(args.metric), metric_train.num)
score_train_1.update(metric_train.get_metric(args.metric_1), metric_train.num)
# Clip gradients (usefull for instabilities or mistakes in ground truth)
if args.clip_grad_norm != 0:
nn.utils.clip_grad_norm(model.parameters(), args.clip_grad_norm)
# Setup backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Time trainig iteration
batch_time.update(time.time() - end)
end = time.time()
# Print info
if (i + 1) % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Metric {score.val:.4f} ({score.avg:.4f})'.format(
epoch+1, i+1, len(train_loader), batch_time=batch_time,
loss=losses,
score=score_train))
print("===> Average RMSE score on training set is {:.4f}".format(score_train.avg))
print("===> Average MAE score on training set is {:.4f}".format(score_train_1.avg))
# Evaulate model on validation set
print("=> Start validation set")
score_valid, score_valid_1, losses_valid = validate(valid_loader, model, criterion_lidar, criterion_rgb, criterion_local, criterion_guide, epoch)
print("===> Average RMSE score on validation set is {:.4f}".format(score_valid))
print("===> Average MAE score on validation set is {:.4f}".format(score_valid_1))
# Evaluate model on selected validation set
if args.subset is None:
print("=> Start selection validation set")
score_selection, score_selection_1, losses_selection = validate(valid_selection_loader, model, criterion_lidar, criterion_rgb, criterion_local, criterion_guide, epoch)
total_score = score_selection
print("===> Average RMSE score on selection set is {:.4f}".format(score_selection))
print("===> Average MAE score on selection set is {:.4f}".format(score_selection_1))
else:
total_score = score_valid
print("===> Last best score was RMSE of {:.4f} in epoch {}".format(lowest_loss,
best_epoch))
# Adjust lr if loss plateaued
if args.lr_policy == 'plateau':
scheduler.step(total_score)
lr = optimizer.param_groups[0]['lr']
print('LR plateaued, hence is set to {}'.format(lr))
# File to keep latest epoch
with open(os.path.join(args.save_path, 'first_run.txt'), 'w') as f:
f.write(str(epoch))
# Save model
to_save = False
if total_score < lowest_loss:
to_save = True
best_epoch = epoch+1
lowest_loss = total_score
save_checkpoint({
'epoch': epoch + 1,
'best epoch': best_epoch,
'arch': args.mod,
'state_dict': model.state_dict(),
'loss': lowest_loss,
'optimizer': optimizer.state_dict()}, to_save, epoch)
if not args.no_tb:
writer.close()
def validate(loader, model, criterion_lidar, criterion_rgb, criterion_local, criterion_guide, epoch=0):
# batch_time = AverageMeter()
losses = AverageMeter()
metric = Metrics(max_depth=args.max_depth, disp=args.use_disp, normal=args.normal)
score = AverageMeter()
score_1 = AverageMeter()
# Evaluate model
model.eval()
# Only forward pass, hence no grads needed
with torch.no_grad():
# end = time.time()
for i, (input, gt) in tqdm(enumerate(loader)):
if not args.no_cuda:
input, gt = input.cuda(non_blocking=True), gt.cuda(non_blocking=True)
prediction, lidar_out, precise, guide = model(input, epoch)
loss = criterion_local(prediction, gt, epoch)
loss_lidar = criterion_lidar(lidar_out, gt, epoch)
loss_rgb = criterion_rgb(precise, gt, epoch)
loss_guide = criterion_guide(guide, gt, epoch)
loss = args.wpred*loss + args.wlid*loss_lidar + args.wrgb*loss_rgb + args.wguide*loss_guide
losses.update(loss.item(), input.size(0))
metric.calculate(prediction[:, 0:1], gt)
score.update(metric.get_metric(args.metric), metric.num)
score_1.update(metric.get_metric(args.metric_1), metric.num)
if (i + 1) % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Metric {score.val:.4f} ({score.avg:.4f})'.format(
i+1, len(loader), loss=losses,
score=score))
if args.evaluate:
print("===> Average RMSE score on validation set is {:.4f}".format(score.avg))
print("===> Average MAE score on validation set is {:.4f}".format(score_1.avg))
return score.avg, score_1.avg, losses.avg
def save_checkpoint(state, to_copy, epoch):
filepath = os.path.join(args.save_path, 'checkpoint_model_epoch_{}.pth.tar'.format(epoch))
torch.save(state, filepath)
if to_copy:
if epoch > 0:
lst = glob.glob(os.path.join(args.save_path, 'model_best*'))
if len(lst) != 0:
os.remove(lst[0])
shutil.copyfile(filepath, os.path.join(args.save_path, 'model_best_epoch_{}.pth.tar'.format(epoch)))
print("Best model copied")
if epoch > 0:
prev_checkpoint_filename = os.path.join(args.save_path, 'checkpoint_model_epoch_{}.pth.tar'.format(epoch-1))
if os.path.exists(prev_checkpoint_filename):
os.remove(prev_checkpoint_filename)
if __name__ == '__main__':
main()