-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path20230204_223042.log
591 lines (525 loc) · 35.4 KB
/
20230204_223042.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
2023-02-04 22:30:42,325 - mmcls - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.8.16 (default, Jan 17 2023, 23:13:24) [GCC 11.2.0]
CUDA available: True
GPU 0: Tesla V100-SXM2-32GB
CUDA_HOME: /data/apps/cuda/11.1
NVCC: Cuda compilation tools, release 11.1, V11.1.105
GCC: gcc (GCC) 7.3.0
PyTorch: 1.10.0
PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX512
- CUDA Runtime 11.3
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
- CuDNN 8.2
- Magma 2.5.2
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,
TorchVision: 0.11.0
OpenCV: 4.7.0
MMCV: 1.7.0
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 11.1
MMClassification: 0.25.0+3d4f80d
------------------------------------------------------------
2023-02-04 22:30:42,328 - mmcls - INFO - Distributed training: False
2023-02-04 22:30:42,433 - mmcls - INFO - Config:
model = dict(
type='ImageClassifier',
backbone=dict(
type='ResNet',
depth=18,
num_stages=4,
out_indices=(3, ),
style='pytorch'),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=5,
in_channels=512,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, )))
dataset_type = 'ImageNet'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(type='CenterCrop', crop_size=224),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]
data = dict(
samples_per_gpu=32,
workers_per_gpu=2,
train=dict(
type='ImageNet',
data_prefix='',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])
],
ann_file='flower/train.txt',
classes='flower/classes.txt'),
val=dict(
type='ImageNet',
data_prefix='',
ann_file='flower/val.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(type='CenterCrop', crop_size=224),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
],
classes='flower/classes.txt'),
test=dict(
type='ImageNet',
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(type='CenterCrop', crop_size=224),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
]))
evaluation = dict(interval=1, metric='accuracy')
checkpoint_config = dict(interval=1)
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = 'checkpoints/resnet18_batch256_imagenet_20200708-34ab8f90.pth'
resume_from = None
workflow = [('train', 1)]
optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(policy='step', step=[1])
runner = dict(type='EpochBasedRunner', max_epochs=100)
work_dir = 'work/resnet18_b32_flower'
gpu_ids = [0]
2023-02-04 22:30:42,434 - mmcls - INFO - Set random seed to 535910259, deterministic: False
2023-02-04 22:30:42,572 - mmcls - INFO - initialize ResNet with init_cfg [{'type': 'Kaiming', 'layer': ['Conv2d']}, {'type': 'Constant', 'val': 1, 'layer': ['_BatchNorm', 'GroupNorm']}]
2023-02-04 22:30:42,699 - mmcls - INFO - initialize LinearClsHead with init_cfg {'type': 'Normal', 'layer': 'Linear', 'std': 0.01}
Name of parameter - Initialization information
backbone.conv1.weight - torch.Size([64, 3, 7, 7]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.bn1.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.bn1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer1.0.conv1.weight - torch.Size([64, 64, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer1.0.bn1.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer1.0.bn1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer1.0.conv2.weight - torch.Size([64, 64, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer1.0.bn2.weight - torch.Size([64]):
Initialized by user-defined `init_weights` in ResNet
backbone.layer1.0.bn2.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer1.1.conv1.weight - torch.Size([64, 64, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer1.1.bn1.weight - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer1.1.bn1.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer1.1.conv2.weight - torch.Size([64, 64, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer1.1.bn2.weight - torch.Size([64]):
Initialized by user-defined `init_weights` in ResNet
backbone.layer1.1.bn2.bias - torch.Size([64]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer2.0.conv1.weight - torch.Size([128, 64, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer2.0.bn1.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer2.0.bn1.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer2.0.conv2.weight - torch.Size([128, 128, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer2.0.bn2.weight - torch.Size([128]):
Initialized by user-defined `init_weights` in ResNet
backbone.layer2.0.bn2.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer2.0.downsample.0.weight - torch.Size([128, 64, 1, 1]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer2.0.downsample.1.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer2.0.downsample.1.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer2.1.conv1.weight - torch.Size([128, 128, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer2.1.bn1.weight - torch.Size([128]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer2.1.bn1.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer2.1.conv2.weight - torch.Size([128, 128, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer2.1.bn2.weight - torch.Size([128]):
Initialized by user-defined `init_weights` in ResNet
backbone.layer2.1.bn2.bias - torch.Size([128]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer3.0.conv1.weight - torch.Size([256, 128, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer3.0.bn1.weight - torch.Size([256]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer3.0.bn1.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer3.0.conv2.weight - torch.Size([256, 256, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer3.0.bn2.weight - torch.Size([256]):
Initialized by user-defined `init_weights` in ResNet
backbone.layer3.0.bn2.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer3.0.downsample.0.weight - torch.Size([256, 128, 1, 1]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer3.0.downsample.1.weight - torch.Size([256]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer3.0.downsample.1.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer3.1.conv1.weight - torch.Size([256, 256, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer3.1.bn1.weight - torch.Size([256]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer3.1.bn1.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer3.1.conv2.weight - torch.Size([256, 256, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer3.1.bn2.weight - torch.Size([256]):
Initialized by user-defined `init_weights` in ResNet
backbone.layer3.1.bn2.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer4.0.conv1.weight - torch.Size([512, 256, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer4.0.bn1.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer4.0.bn1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer4.0.conv2.weight - torch.Size([512, 512, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer4.0.bn2.weight - torch.Size([512]):
Initialized by user-defined `init_weights` in ResNet
backbone.layer4.0.bn2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer4.0.downsample.0.weight - torch.Size([512, 256, 1, 1]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer4.0.downsample.1.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer4.0.downsample.1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer4.1.conv1.weight - torch.Size([512, 512, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer4.1.bn1.weight - torch.Size([512]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer4.1.bn1.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of ImageClassifier
backbone.layer4.1.conv2.weight - torch.Size([512, 512, 3, 3]):
KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0
backbone.layer4.1.bn2.weight - torch.Size([512]):
Initialized by user-defined `init_weights` in ResNet
backbone.layer4.1.bn2.bias - torch.Size([512]):
The value is the same before and after calling `init_weights` of ImageClassifier
head.fc.weight - torch.Size([5, 512]):
NormalInit: mean=0, std=0.01, bias=0
head.fc.bias - torch.Size([5]):
NormalInit: mean=0, std=0.01, bias=0
2023-02-04 22:30:50,302 - mmcls - INFO - load checkpoint from local path: checkpoints/resnet18_batch256_imagenet_20200708-34ab8f90.pth
2023-02-04 22:30:50,468 - mmcls - WARNING - The model and loaded state dict do not match exactly
size mismatch for head.fc.weight: copying a param with shape torch.Size([1000, 512]) from checkpoint, the shape in current model is torch.Size([5, 512]).
size mismatch for head.fc.bias: copying a param with shape torch.Size([1000]) from checkpoint, the shape in current model is torch.Size([5]).
2023-02-04 22:30:50,468 - mmcls - INFO - Start running, host: scv6a1o@g0020, work_dir: /data/home/scv6a1o/mmclassification/work/resnet18_b32_flower
2023-02-04 22:30:50,469 - mmcls - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) CheckpointHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
--------------------
before_train_epoch:
(VERY_HIGH ) StepLrUpdaterHook
(LOW ) IterTimerHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
--------------------
before_train_iter:
(VERY_HIGH ) StepLrUpdaterHook
(LOW ) IterTimerHook
(LOW ) EvalHook
--------------------
after_train_iter:
(ABOVE_NORMAL) OptimizerHook
(NORMAL ) CheckpointHook
(LOW ) IterTimerHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
--------------------
after_train_epoch:
(NORMAL ) CheckpointHook
(LOW ) EvalHook
(VERY_LOW ) TextLoggerHook
--------------------
before_val_epoch:
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook
--------------------
before_val_iter:
(LOW ) IterTimerHook
--------------------
after_val_iter:
(LOW ) IterTimerHook
--------------------
after_val_epoch:
(VERY_LOW ) TextLoggerHook
--------------------
after_run:
(VERY_LOW ) TextLoggerHook
--------------------
2023-02-04 22:30:50,469 - mmcls - INFO - workflow: [('train', 1)], max: 100 epochs
2023-02-04 22:30:50,469 - mmcls - INFO - Checkpoints will be saved to /data/home/scv6a1o/mmclassification/work/resnet18_b32_flower by HardDiskBackend.
2023-02-04 22:31:01,171 - mmcls - INFO - Saving checkpoint at 1 epochs
2023-02-04 22:31:03,387 - mmcls - INFO - Epoch(val) [1][18] accuracy_top-1: 91.2587, accuracy_top-5: 100.0000
2023-02-04 22:31:10,011 - mmcls - INFO - Saving checkpoint at 2 epochs
2023-02-04 22:31:11,601 - mmcls - INFO - Epoch(val) [2][18] accuracy_top-1: 90.9091, accuracy_top-5: 100.0000
2023-02-04 22:31:18,175 - mmcls - INFO - Saving checkpoint at 3 epochs
2023-02-04 22:31:19,602 - mmcls - INFO - Epoch(val) [3][18] accuracy_top-1: 92.1329, accuracy_top-5: 100.0000
2023-02-04 22:31:26,311 - mmcls - INFO - Saving checkpoint at 4 epochs
2023-02-04 22:31:27,812 - mmcls - INFO - Epoch(val) [4][18] accuracy_top-1: 91.9580, accuracy_top-5: 100.0000
2023-02-04 22:31:34,318 - mmcls - INFO - Saving checkpoint at 5 epochs
2023-02-04 22:31:35,790 - mmcls - INFO - Epoch(val) [5][18] accuracy_top-1: 93.0070, accuracy_top-5: 100.0000
2023-02-04 22:31:42,505 - mmcls - INFO - Saving checkpoint at 6 epochs
2023-02-04 22:31:43,928 - mmcls - INFO - Epoch(val) [6][18] accuracy_top-1: 92.6573, accuracy_top-5: 100.0000
2023-02-04 22:31:50,598 - mmcls - INFO - Saving checkpoint at 7 epochs
2023-02-04 22:31:52,033 - mmcls - INFO - Epoch(val) [7][18] accuracy_top-1: 92.1329, accuracy_top-5: 100.0000
2023-02-04 22:31:58,642 - mmcls - INFO - Saving checkpoint at 8 epochs
2023-02-04 22:32:00,101 - mmcls - INFO - Epoch(val) [8][18] accuracy_top-1: 93.1818, accuracy_top-5: 100.0000
2023-02-04 22:32:06,891 - mmcls - INFO - Saving checkpoint at 9 epochs
2023-02-04 22:32:08,290 - mmcls - INFO - Epoch(val) [9][18] accuracy_top-1: 93.0070, accuracy_top-5: 100.0000
2023-02-04 22:32:14,925 - mmcls - INFO - Saving checkpoint at 10 epochs
2023-02-04 22:32:16,380 - mmcls - INFO - Epoch(val) [10][18] accuracy_top-1: 93.0070, accuracy_top-5: 100.0000
2023-02-04 22:32:23,108 - mmcls - INFO - Saving checkpoint at 11 epochs
2023-02-04 22:32:24,638 - mmcls - INFO - Epoch(val) [11][18] accuracy_top-1: 92.4825, accuracy_top-5: 100.0000
2023-02-04 22:32:31,343 - mmcls - INFO - Saving checkpoint at 12 epochs
2023-02-04 22:32:32,858 - mmcls - INFO - Epoch(val) [12][18] accuracy_top-1: 93.8811, accuracy_top-5: 100.0000
2023-02-04 22:32:39,501 - mmcls - INFO - Saving checkpoint at 13 epochs
2023-02-04 22:32:40,998 - mmcls - INFO - Epoch(val) [13][18] accuracy_top-1: 93.3566, accuracy_top-5: 100.0000
2023-02-04 22:32:47,637 - mmcls - INFO - Saving checkpoint at 14 epochs
2023-02-04 22:32:49,074 - mmcls - INFO - Epoch(val) [14][18] accuracy_top-1: 93.5315, accuracy_top-5: 100.0000
2023-02-04 22:32:56,028 - mmcls - INFO - Saving checkpoint at 15 epochs
2023-02-04 22:32:57,491 - mmcls - INFO - Epoch(val) [15][18] accuracy_top-1: 93.3566, accuracy_top-5: 100.0000
2023-02-04 22:33:04,054 - mmcls - INFO - Saving checkpoint at 16 epochs
2023-02-04 22:33:05,628 - mmcls - INFO - Epoch(val) [16][18] accuracy_top-1: 93.5315, accuracy_top-5: 100.0000
2023-02-04 22:33:12,327 - mmcls - INFO - Saving checkpoint at 17 epochs
2023-02-04 22:33:13,755 - mmcls - INFO - Epoch(val) [17][18] accuracy_top-1: 93.0070, accuracy_top-5: 100.0000
2023-02-04 22:33:20,519 - mmcls - INFO - Saving checkpoint at 18 epochs
2023-02-04 22:33:21,963 - mmcls - INFO - Epoch(val) [18][18] accuracy_top-1: 94.2308, accuracy_top-5: 100.0000
2023-02-04 22:33:28,793 - mmcls - INFO - Saving checkpoint at 19 epochs
2023-02-04 22:33:30,264 - mmcls - INFO - Epoch(val) [19][18] accuracy_top-1: 94.0559, accuracy_top-5: 100.0000
2023-02-04 22:33:37,038 - mmcls - INFO - Saving checkpoint at 20 epochs
2023-02-04 22:33:38,478 - mmcls - INFO - Epoch(val) [20][18] accuracy_top-1: 94.2308, accuracy_top-5: 100.0000
2023-02-04 22:33:45,028 - mmcls - INFO - Saving checkpoint at 21 epochs
2023-02-04 22:33:46,499 - mmcls - INFO - Epoch(val) [21][18] accuracy_top-1: 93.7063, accuracy_top-5: 100.0000
2023-02-04 22:33:53,307 - mmcls - INFO - Saving checkpoint at 22 epochs
2023-02-04 22:33:54,756 - mmcls - INFO - Epoch(val) [22][18] accuracy_top-1: 94.4056, accuracy_top-5: 100.0000
2023-02-04 22:34:01,518 - mmcls - INFO - Saving checkpoint at 23 epochs
2023-02-04 22:34:03,017 - mmcls - INFO - Epoch(val) [23][18] accuracy_top-1: 94.0559, accuracy_top-5: 100.0000
2023-02-04 22:34:09,716 - mmcls - INFO - Saving checkpoint at 24 epochs
2023-02-04 22:34:11,197 - mmcls - INFO - Epoch(val) [24][18] accuracy_top-1: 94.0559, accuracy_top-5: 100.0000
2023-02-04 22:34:18,032 - mmcls - INFO - Saving checkpoint at 25 epochs
2023-02-04 22:34:19,460 - mmcls - INFO - Epoch(val) [25][18] accuracy_top-1: 94.4056, accuracy_top-5: 100.0000
2023-02-04 22:34:26,088 - mmcls - INFO - Saving checkpoint at 26 epochs
2023-02-04 22:34:27,543 - mmcls - INFO - Epoch(val) [26][18] accuracy_top-1: 94.2308, accuracy_top-5: 100.0000
2023-02-04 22:34:34,190 - mmcls - INFO - Saving checkpoint at 27 epochs
2023-02-04 22:34:35,673 - mmcls - INFO - Epoch(val) [27][18] accuracy_top-1: 93.7063, accuracy_top-5: 100.0000
2023-02-04 22:34:42,303 - mmcls - INFO - Saving checkpoint at 28 epochs
2023-02-04 22:34:43,739 - mmcls - INFO - Epoch(val) [28][18] accuracy_top-1: 94.2308, accuracy_top-5: 100.0000
2023-02-04 22:34:50,412 - mmcls - INFO - Saving checkpoint at 29 epochs
2023-02-04 22:34:51,828 - mmcls - INFO - Epoch(val) [29][18] accuracy_top-1: 93.8811, accuracy_top-5: 100.0000
2023-02-04 22:34:58,477 - mmcls - INFO - Saving checkpoint at 30 epochs
2023-02-04 22:34:59,977 - mmcls - INFO - Epoch(val) [30][18] accuracy_top-1: 94.0559, accuracy_top-5: 100.0000
2023-02-04 22:35:06,582 - mmcls - INFO - Saving checkpoint at 31 epochs
2023-02-04 22:35:08,095 - mmcls - INFO - Epoch(val) [31][18] accuracy_top-1: 93.7063, accuracy_top-5: 100.0000
2023-02-04 22:35:14,649 - mmcls - INFO - Saving checkpoint at 32 epochs
2023-02-04 22:35:16,108 - mmcls - INFO - Epoch(val) [32][18] accuracy_top-1: 94.5804, accuracy_top-5: 100.0000
2023-02-04 22:35:22,801 - mmcls - INFO - Saving checkpoint at 33 epochs
2023-02-04 22:35:24,244 - mmcls - INFO - Epoch(val) [33][18] accuracy_top-1: 94.4056, accuracy_top-5: 100.0000
2023-02-04 22:35:30,806 - mmcls - INFO - Saving checkpoint at 34 epochs
2023-02-04 22:35:32,316 - mmcls - INFO - Epoch(val) [34][18] accuracy_top-1: 94.9301, accuracy_top-5: 100.0000
2023-02-04 22:35:38,901 - mmcls - INFO - Saving checkpoint at 35 epochs
2023-02-04 22:35:40,304 - mmcls - INFO - Epoch(val) [35][18] accuracy_top-1: 94.4056, accuracy_top-5: 100.0000
2023-02-04 22:35:46,852 - mmcls - INFO - Saving checkpoint at 36 epochs
2023-02-04 22:35:48,300 - mmcls - INFO - Epoch(val) [36][18] accuracy_top-1: 94.5804, accuracy_top-5: 100.0000
2023-02-04 22:35:55,211 - mmcls - INFO - Saving checkpoint at 37 epochs
2023-02-04 22:35:56,623 - mmcls - INFO - Epoch(val) [37][18] accuracy_top-1: 94.5804, accuracy_top-5: 100.0000
2023-02-04 22:36:03,360 - mmcls - INFO - Saving checkpoint at 38 epochs
2023-02-04 22:36:04,804 - mmcls - INFO - Epoch(val) [38][18] accuracy_top-1: 94.4056, accuracy_top-5: 100.0000
2023-02-04 22:36:11,366 - mmcls - INFO - Saving checkpoint at 39 epochs
2023-02-04 22:36:12,837 - mmcls - INFO - Epoch(val) [39][18] accuracy_top-1: 94.2308, accuracy_top-5: 100.0000
2023-02-04 22:36:19,507 - mmcls - INFO - Saving checkpoint at 40 epochs
2023-02-04 22:36:20,916 - mmcls - INFO - Epoch(val) [40][18] accuracy_top-1: 94.0559, accuracy_top-5: 100.0000
2023-02-04 22:36:27,459 - mmcls - INFO - Saving checkpoint at 41 epochs
2023-02-04 22:36:28,920 - mmcls - INFO - Epoch(val) [41][18] accuracy_top-1: 94.2308, accuracy_top-5: 100.0000
2023-02-04 22:36:35,658 - mmcls - INFO - Saving checkpoint at 42 epochs
2023-02-04 22:36:37,075 - mmcls - INFO - Epoch(val) [42][18] accuracy_top-1: 94.7552, accuracy_top-5: 100.0000
2023-02-04 22:36:43,728 - mmcls - INFO - Saving checkpoint at 43 epochs
2023-02-04 22:36:45,137 - mmcls - INFO - Epoch(val) [43][18] accuracy_top-1: 94.7552, accuracy_top-5: 100.0000
2023-02-04 22:36:51,842 - mmcls - INFO - Saving checkpoint at 44 epochs
2023-02-04 22:36:53,258 - mmcls - INFO - Epoch(val) [44][18] accuracy_top-1: 94.5804, accuracy_top-5: 100.0000
2023-02-04 22:37:00,005 - mmcls - INFO - Saving checkpoint at 45 epochs
2023-02-04 22:37:01,447 - mmcls - INFO - Epoch(val) [45][18] accuracy_top-1: 94.5804, accuracy_top-5: 100.0000
2023-02-04 22:37:08,148 - mmcls - INFO - Saving checkpoint at 46 epochs
2023-02-04 22:37:09,575 - mmcls - INFO - Epoch(val) [46][18] accuracy_top-1: 94.5804, accuracy_top-5: 100.0000
2023-02-04 22:37:16,127 - mmcls - INFO - Saving checkpoint at 47 epochs
2023-02-04 22:37:17,605 - mmcls - INFO - Epoch(val) [47][18] accuracy_top-1: 95.1049, accuracy_top-5: 100.0000
2023-02-04 22:37:24,262 - mmcls - INFO - Saving checkpoint at 48 epochs
2023-02-04 22:37:25,778 - mmcls - INFO - Epoch(val) [48][18] accuracy_top-1: 94.5804, accuracy_top-5: 100.0000
2023-02-04 22:37:32,420 - mmcls - INFO - Saving checkpoint at 49 epochs
2023-02-04 22:37:33,844 - mmcls - INFO - Epoch(val) [49][18] accuracy_top-1: 94.5804, accuracy_top-5: 100.0000
2023-02-04 22:37:40,422 - mmcls - INFO - Saving checkpoint at 50 epochs
2023-02-04 22:37:41,848 - mmcls - INFO - Epoch(val) [50][18] accuracy_top-1: 94.7552, accuracy_top-5: 100.0000
2023-02-04 22:37:48,746 - mmcls - INFO - Saving checkpoint at 51 epochs
2023-02-04 22:37:50,163 - mmcls - INFO - Epoch(val) [51][18] accuracy_top-1: 94.7552, accuracy_top-5: 100.0000
2023-02-04 22:37:56,737 - mmcls - INFO - Saving checkpoint at 52 epochs
2023-02-04 22:37:58,187 - mmcls - INFO - Epoch(val) [52][18] accuracy_top-1: 94.9301, accuracy_top-5: 100.0000
2023-02-04 22:38:04,907 - mmcls - INFO - Saving checkpoint at 53 epochs
2023-02-04 22:38:06,358 - mmcls - INFO - Epoch(val) [53][18] accuracy_top-1: 94.9301, accuracy_top-5: 100.0000
2023-02-04 22:38:13,050 - mmcls - INFO - Saving checkpoint at 54 epochs
2023-02-04 22:38:14,501 - mmcls - INFO - Epoch(val) [54][18] accuracy_top-1: 94.5804, accuracy_top-5: 100.0000
2023-02-04 22:38:21,210 - mmcls - INFO - Saving checkpoint at 55 epochs
2023-02-04 22:38:22,683 - mmcls - INFO - Epoch(val) [55][18] accuracy_top-1: 94.7552, accuracy_top-5: 100.0000
2023-02-04 22:38:29,227 - mmcls - INFO - Saving checkpoint at 56 epochs
2023-02-04 22:38:30,711 - mmcls - INFO - Epoch(val) [56][18] accuracy_top-1: 94.9301, accuracy_top-5: 100.0000
2023-02-04 22:38:37,325 - mmcls - INFO - Saving checkpoint at 57 epochs
2023-02-04 22:38:38,756 - mmcls - INFO - Epoch(val) [57][18] accuracy_top-1: 95.1049, accuracy_top-5: 100.0000
2023-02-04 22:38:45,341 - mmcls - INFO - Saving checkpoint at 58 epochs
2023-02-04 22:38:46,751 - mmcls - INFO - Epoch(val) [58][18] accuracy_top-1: 94.7552, accuracy_top-5: 100.0000
2023-02-04 22:38:53,603 - mmcls - INFO - Saving checkpoint at 59 epochs
2023-02-04 22:38:55,033 - mmcls - INFO - Epoch(val) [59][18] accuracy_top-1: 95.2797, accuracy_top-5: 100.0000
2023-02-04 22:39:01,620 - mmcls - INFO - Saving checkpoint at 60 epochs
2023-02-04 22:39:03,059 - mmcls - INFO - Epoch(val) [60][18] accuracy_top-1: 94.7552, accuracy_top-5: 100.0000
2023-02-04 22:39:10,118 - mmcls - INFO - Saving checkpoint at 61 epochs
2023-02-04 22:39:11,577 - mmcls - INFO - Epoch(val) [61][18] accuracy_top-1: 94.9301, accuracy_top-5: 100.0000
2023-02-04 22:39:18,244 - mmcls - INFO - Saving checkpoint at 62 epochs
2023-02-04 22:39:19,659 - mmcls - INFO - Epoch(val) [62][18] accuracy_top-1: 95.1049, accuracy_top-5: 100.0000
2023-02-04 22:39:26,384 - mmcls - INFO - Saving checkpoint at 63 epochs
2023-02-04 22:39:27,822 - mmcls - INFO - Epoch(val) [63][18] accuracy_top-1: 95.2797, accuracy_top-5: 100.0000
2023-02-04 22:39:34,572 - mmcls - INFO - Saving checkpoint at 64 epochs
2023-02-04 22:39:36,038 - mmcls - INFO - Epoch(val) [64][18] accuracy_top-1: 95.1049, accuracy_top-5: 100.0000
2023-02-04 22:39:42,741 - mmcls - INFO - Saving checkpoint at 65 epochs
2023-02-04 22:39:44,263 - mmcls - INFO - Epoch(val) [65][18] accuracy_top-1: 94.9301, accuracy_top-5: 100.0000
2023-02-04 22:39:50,867 - mmcls - INFO - Saving checkpoint at 66 epochs
2023-02-04 22:39:52,288 - mmcls - INFO - Epoch(val) [66][18] accuracy_top-1: 95.1049, accuracy_top-5: 100.0000
2023-02-04 22:39:58,957 - mmcls - INFO - Saving checkpoint at 67 epochs
2023-02-04 22:40:00,389 - mmcls - INFO - Epoch(val) [67][18] accuracy_top-1: 95.2797, accuracy_top-5: 100.0000
2023-02-04 22:40:06,896 - mmcls - INFO - Saving checkpoint at 68 epochs
2023-02-04 22:40:08,411 - mmcls - INFO - Epoch(val) [68][18] accuracy_top-1: 95.1049, accuracy_top-5: 100.0000
2023-02-04 22:40:15,138 - mmcls - INFO - Saving checkpoint at 69 epochs
2023-02-04 22:40:16,599 - mmcls - INFO - Epoch(val) [69][18] accuracy_top-1: 95.1049, accuracy_top-5: 100.0000
2023-02-04 22:40:23,256 - mmcls - INFO - Saving checkpoint at 70 epochs
2023-02-04 22:40:24,778 - mmcls - INFO - Epoch(val) [70][18] accuracy_top-1: 94.7552, accuracy_top-5: 100.0000
2023-02-04 22:40:31,345 - mmcls - INFO - Saving checkpoint at 71 epochs
2023-02-04 22:40:32,801 - mmcls - INFO - Epoch(val) [71][18] accuracy_top-1: 94.9301, accuracy_top-5: 100.0000
2023-02-04 22:40:39,506 - mmcls - INFO - Saving checkpoint at 72 epochs
2023-02-04 22:40:40,933 - mmcls - INFO - Epoch(val) [72][18] accuracy_top-1: 95.2797, accuracy_top-5: 100.0000
2023-02-04 22:40:47,552 - mmcls - INFO - Saving checkpoint at 73 epochs
2023-02-04 22:40:49,027 - mmcls - INFO - Epoch(val) [73][18] accuracy_top-1: 94.5804, accuracy_top-5: 100.0000
2023-02-04 22:40:55,669 - mmcls - INFO - Saving checkpoint at 74 epochs
2023-02-04 22:40:57,089 - mmcls - INFO - Epoch(val) [74][18] accuracy_top-1: 94.9301, accuracy_top-5: 100.0000
2023-02-04 22:41:03,656 - mmcls - INFO - Saving checkpoint at 75 epochs
2023-02-04 22:41:05,096 - mmcls - INFO - Epoch(val) [75][18] accuracy_top-1: 94.9301, accuracy_top-5: 100.0000
2023-02-04 22:41:11,697 - mmcls - INFO - Saving checkpoint at 76 epochs
2023-02-04 22:41:13,117 - mmcls - INFO - Epoch(val) [76][18] accuracy_top-1: 94.9301, accuracy_top-5: 100.0000
2023-02-04 22:41:19,799 - mmcls - INFO - Saving checkpoint at 77 epochs
2023-02-04 22:41:21,208 - mmcls - INFO - Epoch(val) [77][18] accuracy_top-1: 95.6294, accuracy_top-5: 100.0000
2023-02-04 22:41:27,788 - mmcls - INFO - Saving checkpoint at 78 epochs
2023-02-04 22:41:29,332 - mmcls - INFO - Epoch(val) [78][18] accuracy_top-1: 95.1049, accuracy_top-5: 100.0000
2023-02-04 22:41:36,108 - mmcls - INFO - Saving checkpoint at 79 epochs
2023-02-04 22:41:37,553 - mmcls - INFO - Epoch(val) [79][18] accuracy_top-1: 95.6294, accuracy_top-5: 100.0000
2023-02-04 22:41:44,253 - mmcls - INFO - Saving checkpoint at 80 epochs
2023-02-04 22:41:45,732 - mmcls - INFO - Epoch(val) [80][18] accuracy_top-1: 95.2797, accuracy_top-5: 100.0000
2023-02-04 22:41:52,332 - mmcls - INFO - Saving checkpoint at 81 epochs
2023-02-04 22:41:53,781 - mmcls - INFO - Epoch(val) [81][18] accuracy_top-1: 95.1049, accuracy_top-5: 100.0000
2023-02-04 22:42:00,369 - mmcls - INFO - Saving checkpoint at 82 epochs
2023-02-04 22:42:01,841 - mmcls - INFO - Epoch(val) [82][18] accuracy_top-1: 94.9301, accuracy_top-5: 100.0000
2023-02-04 22:42:08,462 - mmcls - INFO - Saving checkpoint at 83 epochs
2023-02-04 22:42:09,893 - mmcls - INFO - Epoch(val) [83][18] accuracy_top-1: 94.9301, accuracy_top-5: 100.0000
2023-02-04 22:42:16,532 - mmcls - INFO - Saving checkpoint at 84 epochs
2023-02-04 22:42:17,990 - mmcls - INFO - Epoch(val) [84][18] accuracy_top-1: 94.9301, accuracy_top-5: 100.0000
2023-02-04 22:42:24,644 - mmcls - INFO - Saving checkpoint at 85 epochs
2023-02-04 22:42:26,050 - mmcls - INFO - Epoch(val) [85][18] accuracy_top-1: 94.9301, accuracy_top-5: 100.0000
2023-02-04 22:42:32,791 - mmcls - INFO - Saving checkpoint at 86 epochs
2023-02-04 22:42:34,220 - mmcls - INFO - Epoch(val) [86][18] accuracy_top-1: 95.1049, accuracy_top-5: 100.0000
2023-02-04 22:42:40,794 - mmcls - INFO - Saving checkpoint at 87 epochs
2023-02-04 22:42:42,298 - mmcls - INFO - Epoch(val) [87][18] accuracy_top-1: 95.1049, accuracy_top-5: 100.0000
2023-02-04 22:42:48,968 - mmcls - INFO - Saving checkpoint at 88 epochs
2023-02-04 22:42:50,427 - mmcls - INFO - Epoch(val) [88][18] accuracy_top-1: 95.8042, accuracy_top-5: 100.0000
2023-02-04 22:42:56,995 - mmcls - INFO - Saving checkpoint at 89 epochs
2023-02-04 22:42:58,413 - mmcls - INFO - Epoch(val) [89][18] accuracy_top-1: 95.1049, accuracy_top-5: 100.0000
2023-02-04 22:43:05,119 - mmcls - INFO - Saving checkpoint at 90 epochs
2023-02-04 22:43:06,500 - mmcls - INFO - Epoch(val) [90][18] accuracy_top-1: 95.2797, accuracy_top-5: 100.0000
2023-02-04 22:43:13,144 - mmcls - INFO - Saving checkpoint at 91 epochs
2023-02-04 22:43:14,626 - mmcls - INFO - Epoch(val) [91][18] accuracy_top-1: 95.1049, accuracy_top-5: 100.0000
2023-02-04 22:43:21,225 - mmcls - INFO - Saving checkpoint at 92 epochs
2023-02-04 22:43:22,650 - mmcls - INFO - Epoch(val) [92][18] accuracy_top-1: 94.9301, accuracy_top-5: 100.0000
2023-02-04 22:43:29,340 - mmcls - INFO - Saving checkpoint at 93 epochs
2023-02-04 22:43:30,752 - mmcls - INFO - Epoch(val) [93][18] accuracy_top-1: 95.6294, accuracy_top-5: 100.0000
2023-02-04 22:43:37,376 - mmcls - INFO - Saving checkpoint at 94 epochs
2023-02-04 22:43:38,905 - mmcls - INFO - Epoch(val) [94][18] accuracy_top-1: 95.1049, accuracy_top-5: 100.0000
2023-02-04 22:43:45,553 - mmcls - INFO - Saving checkpoint at 95 epochs
2023-02-04 22:43:47,009 - mmcls - INFO - Epoch(val) [95][18] accuracy_top-1: 95.1049, accuracy_top-5: 100.0000
2023-02-04 22:43:53,529 - mmcls - INFO - Saving checkpoint at 96 epochs
2023-02-04 22:43:54,966 - mmcls - INFO - Epoch(val) [96][18] accuracy_top-1: 95.2797, accuracy_top-5: 100.0000
2023-02-04 22:44:01,627 - mmcls - INFO - Saving checkpoint at 97 epochs
2023-02-04 22:44:03,118 - mmcls - INFO - Epoch(val) [97][18] accuracy_top-1: 95.4545, accuracy_top-5: 100.0000
2023-02-04 22:44:09,694 - mmcls - INFO - Saving checkpoint at 98 epochs
2023-02-04 22:44:11,153 - mmcls - INFO - Epoch(val) [98][18] accuracy_top-1: 95.8042, accuracy_top-5: 100.0000
2023-02-04 22:44:17,833 - mmcls - INFO - Saving checkpoint at 99 epochs
2023-02-04 22:44:19,259 - mmcls - INFO - Epoch(val) [99][18] accuracy_top-1: 95.4545, accuracy_top-5: 100.0000
2023-02-04 22:44:25,929 - mmcls - INFO - Saving checkpoint at 100 epochs
2023-02-04 22:44:27,404 - mmcls - INFO - Epoch(val) [100][18] accuracy_top-1: 95.2797, accuracy_top-5: 100.0000