-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathimage_training.py
51 lines (35 loc) · 1.64 KB
/
image_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#-*- coding:utf-8 -*
import numpy as np
from captcha_ml import image_process, image_feature, image_model
from captcha_ml.config import *
import configparser
#读取配置文件
# config = configparser.ConfigParser()
# config.read("./config.ini")
# captcha_path = config.get("global", "captcha_path") #训练集验证码存放路径
# captcha__clean_path = config.get("global", "captcha__clean_path") #训练集验证码清理存放路径
# train_data_path = config.get("global", "train_data_path") #训练集存放路径
# model_path = config.get("global", "model_path") #模型存放路径
# test_data_path = config.get("global", "test_data_path") #测试集验证码存放路径
#
# image_character_num = config.get("global", "image_character_num") #识别的验证码个数
# threshold_grey = config.get("global", "threshold_grey") #图像粗处理的灰度阈值
# image_width = config.get("global", "image_width") #标准化的图像宽度(像素)
# image_height = config.get("global", "image_height") #标准化的图像高度(像素)
def main():
# image_process.main() #处理原始验证码,并存到文件
# feature, label = image_feature.main() #特征处理
#特征处理
image_array, label = image_feature.read_train_data()
feature = []
for num, image in enumerate(image_array):
feature_vec = image_feature.feature_transfer(image)
# print('label: ',image_label[num])
# print(feature)
feature.append(feature_vec)
print(np.array(feature).shape)
print(np.array(label).shape)
#训练模型
result = image_model.trainModel(feature, label)
if __name__ == '__main__':
main()