Skip to content

Latest commit

 

History

History
191 lines (158 loc) · 7.01 KB

README.md

File metadata and controls

191 lines (158 loc) · 7.01 KB

GNSS-Shadowing

Predict GNSS Shadowing and HDOP Maps and plan HDOP optimal routes

Written in C++ and has working python bindings.

The ideas behind it are simple: Satellite trajectories are computed using SGP4 from publicly available TLE files. The current ones will be downloaded from cmake. Some coordinate system transformations later a simple software shadow rasterization (in layered 2D map) algorithm is performed with 3D data pulled in from .obj files that are generated from OpenStreetMap / OSM2World. Dilution of Precision values are calculated from visible satellites for each rasterization point. The shadow information could also be used to do shadow matching.

Acquiring 3D world data

We use freely available data from OpenStreetMap and the tool OSM2World to extract .obj files.

Go to OSM2World Webpage http://osm2world.org/ and download OSM2World tool.

SRTM data is used to get terrain height. This can be downloaded from: https://dds.cr.usgs.gov/srtm/version2_1/SRTM3 The files are grouped by continents and integer valued (truncated) longitudes and latitudes. E.g. for the test area during the development (52.138749,11.639704 - 52.141384,11.646782) the filename would be N25E011.hgt.zip. The continent would be Eurasia. So the complete url would be https://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Eurasia/N52E011.hgt.zip This is a zip file that contains the SRTM file with the terrain height information. To use this in OSM2World put the extracted SRTM file in a "srtm" subfolder of the OSM2World directory.

OSM2World isn't configured by default to use SRTM data. So you need to create a config file from the example "config.properties" that comes with OSM2World. There is a line that specifies the srtm data folder to use. Uncomment this so the following setting is set: srtmDir = srtm

Now OSM2World can be invoked from command line with the newly created config file as parameter. Additionally the longitude,latitude limits for the extracted world patch need to be specified:

(osm-program) --config example_config.properties \
              --output result.obj                \
              --input_bbox 52.138749,11.639704   \
                           52.141384,11.646782   \
              --input_mode OVERPASS

Where (osm-program) is osm2world-windows.bat for Windows and osm2world.sh for Linux.

The resulting file "result.obj" can now be used for GNSS shadowing.

Usage of python bindings

To plan a hdop optimal route:

import gnssShadowing
world=gnssShadowing.World("data/2017-03-28.tle","data/uni.obj","Building")
planeLevels = gnssShadowing.PlaneLevelList()
planeLevels.extend([56.0])
width_m = 800
height_m = 400
res_x = res_y = 10.0
width = (int)(width_m / res_x)
height = (int)(height_m / res_y)
min_x = -width_m/2.
min_y = -height_m/2.
mapProperties = gnssShadowing.MapProperties(min_x,min_y,width,height,res_x,res_y,planeLevels)
minimumElevation = gnssShadowing.deg2rad(5)
time = gnssShadowing.mkSeconds(2017,3,28,12,0,0) # oder gnssShadowing.unixTimeInSeconds()
timePerStep = 5 # in seconds
mapper = gnssShadowing.MapperLazyTimesteps(world,mapProperties,time,timePerStep,minimumElevation)

maxHorizontalDOP = 5
conv = gnssShadowing.MapCoordinateConverter(mapProperties,world.m_origin)
# latitude,longitude in gitterkoordinaten umwandeln:
d2r = gnssShadowing.deg2rad
start_geo = gnssShadowing.Geodetic(d2r(52.140992), d2r(11.640801), planeLevels[0],0)
target_geo = gnssShadowing.Geodetic(d2r(52.139854), d2r(11.645191), planeLevels[0],0)
start = gnssShadowing.MapTimeNode(0,conv.geodeticToGridCoordinate(start_geo))
target = gnssShadowing.MapTimeNode(0,conv.geodeticToGridCoordinate(target_geo))
# oder direkt:
#start  = gnssShadowing.MapTimeNode(0,gnssShadowing.MapNode(0,0))
#target = gnssShadowing.MapTimeNode(0,gnssShadowing.MapNode(1,1))
maxHorizontalDOP = 5.
costPerHorizontalDOP = 1.
costPerGridStep = 1.
costPerTimeStep = 1.
costPerTimeTotal = 0.
timeStepsPerStep = 1
problem = gnssShadowing.MapTimeProblem(
        maxHorizontalDOP,costPerHorizontalDOP,costPerGridStep,
        costPerTimeStep,costPerTimeTotal,timeStepsPerStep,
        mapper, 
        start,target)

solver = gnssShadowing.MapTimeProblemSolver()
path = solver.findShortestPath(problem)

To generate a visibility map and access its elements:

import gnssShadowing
world=gnssShadowing.World("data/2017-03-28.tle","data/uni.obj","Building")
planeLevels = gnssShadowing.PlaneLevelList()
planeLevels.extend([56.0])
width_m = 800
height_m = 400
res_x = res_y = 2.0
width = (int)(width_m / res_x)
height = (int)(height_m / res_y)
min_x = -width_m/2.
min_y = -height_m/2.
mapProperties = gnssShadowing.MapProperties(min_x,min_y,width,height,res_x,res_y,planeLevels)
minimumElevation = gnssShadowing.deg2rad(5)
mapper = gnssShadowing.Mapper(world, mapProperties, minimumElevation)
mapper.computeDOPMap(gnssShadowing.mkSeconds(2017,3,28,12,0,0))
visibilityMap = mapper.m_visibilityMap
sumVisible = 0
z = 0
for x in range(0,width):
    for y in range(0,height):
        sumVisible+=mapper.m_visibilityMap.getItem(x,y,z).size()
        
        # first visible satellite as index into mapper.m_sats:
        print(mapper.m_visibilityMap.getItem(x,y,z)[0]) 

To generate a HDOP map as numpy array:

import gnssShadowing
world=gnssShadowing.World("data/2017-03-28.tle","data/uni.obj","Building")
planeLevels = gnssShadowing.PlaneLevelList()
planeLevels.extend([56.0])
width_m = 800
height_m = 400
res_x = res_y = 2.0
width = (int)(width_m / res_x)
height = (int)(height_m / res_y)
min_x = -width_m/2.
min_y = -height_m/2.
mapProperties = gnssShadowing.MapProperties(min_x,min_y,width,height,res_x,res_y,planeLevels)
minimumElevation = gnssShadowing.deg2rad(5)
mapper = gnssShadowing.Mapper(world, mapProperties, minimumElevation)
dopMap = mapper.computeDOPMap(gnssShadowing.mkSeconds(2017,3,28,12,0,0))
z=0
hdop = mapper.m_dopMap.getHDOPMap(z)
assert type(hdop) == np.ndarray

Build

mkdir build
cd build
cmake ..
make

Build in msys2

mkdir build
cd build
cmake .. -G "Unix Makefiles" -DOpenCV_DIR=/mingw64/share/OpenCV/lib
make

There is known bug with boost.python in mingw that causes the python bindings to not build in this platform.

Dependencies

dev tools

sudo apt-get install -y git cmake htop binutils build-essential pkg-config gdb valgrind

for compiling qt stuff

sudo apt-get install -y qt5-default libqt4-opengl-dev libqt5opengl5-dev

for compiling boost stuff

sudo apt-get install -y libboost-all-dev

for compiling opengl stuff

sudo apt-get install -y freeglut3 freeglut3-dev libgl1-mesa-dev libglew-dev libglu1-mesa-dev  mesa-common-dev libxmu-dev libxi-dev 

OpenCV3

Howto: Where to put header files?

Headers that should be visible from other projects are put in the ./project-name/include/project-name folders. They need to be added to the following files:

  • ./project-name/include/project-name/CMakeLists.txt
  • ./project-name/src/CMakeLists.txt

Headers for classes that should not be visible form other projects should be put in the ./project-name/src/ folders.