-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathrun_spaun.py
956 lines (846 loc) · 40.4 KB
/
run_spaun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
from __future__ import print_function
import os
import sys
import time
import argparse
import nengo
from _spaun.configurator import cfg
from _spaun.vocabulator import vocab
from _spaun.experimenter import experiment
from _spaun.loggerator import logger
from _spaun.utils import get_probe_data_filename
# ----- Defaults -----
def_dim = 512
def_seq = 'A'
def_i = ''
def_mpi_p = 128
# ----- Spaun (character & instruction) presets -----
stim_presets = {}
# Standard Spaun stimulus presets
# TODO: Add in configuration options into presets as well?
stim_presets['copy_draw'] = ('A0[#1]?X', '')
stim_presets['copy_draw_mult'] = ('A0[#1#2#3]?XXX', '')
stim_presets['digit_recog'] = ('A1[#1]?XXX', '')
stim_presets['learning'] = ('A2?{X:30}', '')
stim_presets['memory_3'] = ('A3[123]?XXXX', '')
stim_presets['memory_4'] = ('A3[1234]?XXXX', '')
stim_presets['memory_7'] = ('A3[2567589]?XXXXXXXXX', '')
stim_presets['count_3'] = ('A4[5][3]?XXXXXX', '')
stim_presets['count_9'] = ('A4[0][9]?XXXXXXXXXXX', '')
stim_presets['count_3_list'] = ('A4[321][3]?XXXXXXX', '')
stim_presets['qa_kind'] = ('A5[123]K[3]?X', '')
stim_presets['qa_pos'] = ('A5[123]P[1]?X', '')
stim_presets['rvc_simple'] = ('A6[12][2][82][2][42]?XXXXX', '')
stim_presets['rvc_complex'] = ('A6[8812][12][8842][42][8862][62][8832]?XXXXX',
'')
stim_presets['induction_simple'] = ('A7[1][2][3][2][3][4][3][4]?X', '')
stim_presets['induction_incomplete'] = ('A7[1][2][3][2]?XX', '')
stim_presets['induction_ravens'] = ('A7[1][11][111][2][22][222][3][33]?XXXXX',
'')
# Darpa adaptive motor presets
stim_presets['darpa_adapt_motor1'] = ('{A3[#4#2#7#5]?XXXX:8}', '')
# Darpa imagenet presets
stim_presets['darpa_imagenet1'] = ('{AC[#BOX_TURTLE][#BOX_TURTLE]?X' +
'AC[#SEWING_MACHINE][#SEWING_MACHINE]?X' +
'AC[#GUENON][#GUENON]?X' +
'AC[#TIBETAN_TERRIER][#TIBETAN_TERRIER]?X' +
'AC[#PERSIAN_CAT][#PERSIAN_CAT]?X:5}', '')
stim_presets['darpa_imagenet2'] = ('{AC[#BOX_TURTLE][#SEWING_MACHINE]?X' +
'AC[#BOX_TURTLE][#GUENON]?X' +
'AC[#BOX_TURTLE][#TIBETAN_TERRIER]?X' +
'AC[#BOX_TURTLE][#PERSIAN_CAT]?X:5}', '')
stim_presets['darpa_imagenet3'] = ('{AC[#SEWING_MACHINE][#BOX_TURTLE]?X' +
'AC[#SEWING_MACHINE][#GUENON]?X' +
'AC[#SEWING_MACHINE][#TIBETAN_TERRIER]?X' +
'AC[#SEWING_MACHINE][#PERSIAN_CAT]?X:5}',
'')
stim_presets['darpa_imagenet4'] = ('{AC[#GUENON][#BOX_TURTLE]?X' +
'AC[#GUENON][#SEWING_MACHINE]?X' +
'AC[#GUENON][#TIBETAN_TERRIER]?X' +
'AC[#GUENON][#PERSIAN_CAT]?X:5}', '')
stim_presets['darpa_imagenet5'] = ('{AC[#TIBETAN_TERRIER][#BOX_TURTLE]?X' +
'AC[#TIBETAN_TERRIER][#SEWING_MACHINE]?X' +
'AC[#TIBETAN_TERRIER][#GUENON]?X' +
'AC[#TIBETAN_TERRIER][#PERSIAN_CAT]?X:5}',
'')
stim_presets['darpa_imagenet6'] = ('{AC[#PERSIAN_CAT][#BOX_TURTLE]?X' +
'AC[#PERSIAN_CAT][#SEWING_MACHINE]?X' +
'AC[#PERSIAN_CAT][#GUENON]?X' +
'AC[#PERSIAN_CAT][#TIBETAN_TERRIER]?X:5}',
'')
# Darpa instruction following presets
stim_resp_i = 'I1: VIS*ONE, DATA*POS1*NIN;I2: VIS*TWO, DATA*POS1*EIG;' + \
'I3: VIS*THR, DATA*POS1*SEV;I4: VIS*FOR, DATA*POS1*SIX;' + \
'I5: VIS*FIV, DATA*POS1*FIV;I6: VIS*SIX, DATA*POS1*FOR;' + \
'I7: VIS*SEV, DATA*POS1*THR;I8: VIS*EIG, DATA*POS1*TWO;' + \
'I9: VIS*NIN, DATA*POS1*ONE;I0: VIS*ZER, DATA*POS1*ZER'
stim_presets['darpa_instr_stim_resp_2'] = \
('%I1+I2%A9{?1X?2X:5}%I3+I4%A9{?4X?3X:5}', stim_resp_i)
stim_presets['darpa_instr_stim_resp_3'] = \
('%I1+I2+I3%A9{?1X?2X?3X:5}%I4+I5+I6%A9{?6X?5X?4X:5}', stim_resp_i)
stim_presets['darpa_instr_stim_resp_4'] = \
('%I1+I2+I3+I4%A9{?1X?2X?3X?4X:5}%I0+I9+I8+I7%A9{?0X?9X?8X?7X:5}',
stim_resp_i)
stim_presets['darpa_instr_stim_resp_5'] = \
('%I1+I2+I3+I4+I5%A9{?1X?2X?3X?4X?5X:5}' +
'%I0+I9+I8+I7+I6%A9{?0X?9X?8X?7X?6X:5}', stim_resp_i)
stim_presets['darpa_instr_stim_resp_6'] = \
('%I1+I2+I3+I4+I5+I6%A9{?1X?2X?3X?4X?5X?6X:5}' +
'%I0+I9+I8+I7+I6+I5%A9{?0X?9X?8X?7X?6X?5X:5}', stim_resp_i)
stim_presets['darpa_instr_stim_resp_7'] = \
('%I1+I2+I3+I4+I5+I6+I7%A9{?1X?2X?3X?4X?5X?6X?7X:5}' +
'%I0+I9+I8+I7+I6+I5+I4%A9{?0X?9X?8X?7X?6X?5X?4X:5}', stim_resp_i)
stim_presets['darpa_instr_stim_resp_8'] = \
('%I1+I2+I3+I4+I5+I6+I7+I8%A9{?1X?2X?3X?4X?5X?6X?7X?8X:5}' +
'%I0+I9+I8+I7+I6+I5+I4+I3%A9{?0X?9X?8X?7X?6X?5X?4X?3X:5}', stim_resp_i)
stim_task_i = 'I1: VIS*ONE, TASK*F;I2: VIS*TWO, TASK*C;' + \
'I3: VIS*THR, TASK*M + DEC*REV; I4: VIS*FOR, TASK*W;' + \
'I5: VIS*FIV, TASK*M; I6: VIS*SIX, TASK*V;' + \
'I7: VIS*SEV, TASK*A;I8: VIS*EIG, TASK*REACT+STATE*DIRECT'
stim_presets['darpa_instr_stim_task_2'] = \
('%I1+I2%{M1.[1][2][3][2][3][4][3][4]?XM2.[0][3]?XXXX:5}' +
'%I3+I4%{M3.[321]?XXXM4.[0]?X:5}', stim_task_i)
stim_presets['darpa_instr_stim_task_3'] = \
('%I1+I2+I3%{M1.[1][2][3][2][3][4][3][4]?XM2.[0][3]?XXXXM3.[321]?XXX:5}' +
'%I4+I5+I6%{M4.[0]?XM5.[123]?XXXM6.[13][3][12][2][11]?X:5}', stim_task_i)
stim_presets['darpa_instr_stim_task_4'] = \
('%I1+I2+I3+I4%{M1.[1][2][3][2][3][4][3][4]?XM2.[0][3]?XXXX' +
'M3.[321]?XXXM4.[9]?X:5}%I3+I4+I5+I6%{M3.[987]?XXXM4[0]?X' +
'M5.[123]?XXXM6.[13][3][12][2][11]?X:5}', stim_task_i)
stim_presets['darpa_instr_stim_task_5'] = \
('%I1+I2+I3+I4+I5%{M1.[1][2][3][2][3][4][3][4]?XM2.[0][3]?XXXX' +
'M3.[321]?XXXM4.[9]?XM5.[123]?XXX:5}%I4+I5+I6+I7+I8%{M4[0]?X' +
'M5.[123]?XXXM6.[13][3][12][2][11]?XM7.[123]P[3]?XM8.?1X?2X:5}',
stim_task_i)
stim_presets['darpa_instr_stim_task_6'] = \
('%I1+I2+I3+I4+I5+I6%{M1.[1][2][3][2][3][4][3][4]?XM2.[0][3]?XXXX' +
'M3.[321]?XXXM4.[9]?XM5.[123]?XXXM6.[39][9][38][8][37]?X:5}' +
'%I3+I4+I5+I6+I7+I8%{M3.[876]?XXXM4[0]?XM5.[456]?XXX' +
'M6.[13][3][12][2][11]?XM7.[123]P[3]?XM8.?1X?2X:5}', stim_task_i)
seq_task_i = 'I1: POS1, TASK*F;I2: POS2, TASK*C;' + \
'I3: POS3, TASK*M + DEC*REV; I4: POS4, TASK*W;' + \
'I5: POS5, TASK*M; I6: POS6, TASK*V;' + \
'I7: POS7, TASK*A;I8: POS8, TASK*REACT+STATE*DIRECT'
stim_presets['darpa_instr_seq_task_2'] = \
('%I1+I2%{MP1.[1][2][3][2][3][4][3][4]?XMP2.[0][3]?XXXX:5}' +
'%I3+I4%{MP3.[321]?XXXMP4.[0]?X:5}', seq_task_i)
stim_presets['darpa_instr_seq_task_3'] = \
('%I1+I2+I5%{MP1.[1][2][3][2][3][4][3][4]?XMP2.[0][3]?XXXX' +
'MP5.[123]?XXX:5}%I3+I4+I6%{MP6.[21][1][24][4][26][6][28]?' +
'XXMP4.[0]?XMP3.[321]?XXX:5}', seq_task_i)
stim_presets['darpa_instr_seq_task_4'] = \
('%I1+I2+I5+I7%{MP1.[1][2][3][2][3][4][3][4]?XMP2.[0][3]?XXXX' +
'MP5.[123]?XXXMP7.[123]K[3]?X:5}%I3+I4+I6+I8%{MP8.?1X?2X' +
'MP6.[21][1][24][4][26][6][28]?XXMP4.[0]?XMP3.[321]?XXX:5}', seq_task_i)
stim_presets['darpa_instr_seq_task_5'] = \
('%I1+I2+I5+I7+I3%{MP1.[1][2][3][2][3][4][3][4]?XMP2.[0][3]?XXXX' +
'MP5.[123]?XXXMP7.[123]K[3]?XMP3.[456]?XXX:5}' +
'%I3+I4+I6+I8+I2%{MP2.[0][1]?XXMP8.?1X?2X' +
'MP6.[21][1][24][4][26][6][28]?XXMP4.[0]?XMP3.[321]?XXX:5}', seq_task_i)
stim_presets['darpa_instr_seq_task_6'] = \
('%I1+I2+I5+I7+I3+I4%{MP1.[1][2][3][2][3][4][3][4]?XMP2.[0][3]?XXXX' +
'MP5.[123]?XXXMP7.[123]K[3]?XMP3.[456]?XXXMP4.[5]?X:5}' +
'%I3+I4+I6+I8+I2+I5%{MP5.[456]?XXXMP2.[0][1]?XXMP8.?1X?2X' +
'MP6.[21][1][24][4][26][6][28]?XXMP4.[0]?XMP3.[321]?XXX:5}', seq_task_i)
stim_presets['darpa_instr_stim_resp_demo1'] = \
('%I1+I2%A9?4X?9X%I1+I2+I3%A9?5XXX',
'I1: VIS*FOR, DATA*POS1*TWO; I2: VIS*NIN, DATA*POS1*THR;' +
'I3: VIS*FIV, DATA*(POS1*FOR + POS2*TWO + POS3*THR)')
stim_presets['darpa_instr_stim_resp_demo2'] = \
('%I1+I2%A9?4X?9X%I3+I4%A9?4X?9X',
'I1: VIS*FOR, DATA*POS1*TWO; I2: VIS*NIN, DATA*POS1*THR;' +
'I3: VIS*FOR, DATA*POS1*ONE; I4: VIS*NIN, DATA*POS1*EIG')
stim_presets['darpa_instr_stim_task_demo1'] = \
('%I1+I4%M1[#2]?XM2[427]?XXX',
'I1: VIS*ONE, TASK*W; I2: VIS*TWO, TASK*R;' +
'I3: VIS*ONE, TASK*M + DEC*FWD; I4: VIS*TWO, TASK*M + DEC*REV')
stim_presets['darpa_instr_stim_task_demo2'] = \
('%I1+I2%M1[<3725>]?XM2[<3725>]?X%I3+I4%M2[427]?XXX',
'I1: VIS*ONE, TASK*W; I2: VIS*TWO, TASK*R;' +
'I3: VIS*ONE, TASK*M + DEC*FWD; I4: VIS*TWO, TASK*M + DEC*REV')
stim_presets['darpa_instr_seq_task_demo'] = \
('%I1+I2+I3%MP3[<3725>]?XMP1[427]?XXXV[<3725>]?X',
'I1: POS3, TASK*W; I2: POS2, TASK*R;I3: POS1, TASK*M + DEC*FWD')
# def_seq = 'A1[1]?XXA1[22]?XX'
# def_seq = '{A1[R]?X:5}'
# def_seq = '{A3[{R:7}]?{X:8}:5}'
# def_seq = '{A3[{R:7}]?{X:8}:160}'
# def_seq = 'A3[{R:7}]?{X:8}'
# def_seq = '%I1+I2%MP1.5[123]?XXXMP1.8[123]?XXX'
# def_i = 'I1: 0.5*POS1 + 0.5*VIS*FOR, TASK*M + DEC*FWD;' + \
# 'I2: 0.5*POS1 + 0.5*VIS*EIG, TASK*M + DEC*REV'
# Darpa instruction following + imagenet + adaptive motor presets
stim_presets['darpa_combined1'] = \
('%I1+I2+I3%{A9?#POLICE_VAN,X?#PUCK,X?#GREY_WHALE,X:5}' +
'%I4+I5+I6%{A9?#ORGAN,X?#GREY_WHALE,X?#HALF_TRACK,X:5}' +
'A3[938]?XXXA3[456]?XXX',
'I1: VIS*GREY_WHALE, DATA*POS1*NIN;' +
'I2: VIS*POLICE_VAN, DATA*POS1*SEV;' +
'I3: VIS*PUCK, DATA*POS1*THR;' +
'I4: VIS*GREY_WHALE, DATA*POS1*EIG;' +
'I5: VIS*HALF_TRACK, DATA*POS1*TWO;' +
'I6: VIS*ORGAN, DATA*POS1*ONE')
stim_presets['darpa_combined2'] = \
('%I1+I2+I3%{A9?#1,X?#2,X?#3,X:5}' +
'%I4+I5+I6%{A9?#4,X?#3,X?#5,X:5}' +
'A3[938]?XXXA3[456]?XXX',
'I1: VIS*ONE, DATA*POS1*NIN;' +
'I2: VIS*TWO, DATA*POS1*SEV;' +
'I3: VIS*THR, DATA*POS1*THR;' +
'I4: VIS*FOR, DATA*POS1*EIG;' +
'I5: VIS*THR, DATA*POS1*TWO;' +
'I6: VIS*FIV, DATA*POS1*ONE')
stim_presets['darpa_combined_test'] = \
('%I1+I2+I3%{A9?#POLICE_VAN,X?#PUCK,X?#GREY_WHALE,X:1}',
'I1: VIS*GREY_WHALE, DATA*POS1*NIN;' +
'I2: VIS*POLICE_VAN, DATA*POS1*SEV;' +
'I3: VIS*PUCK, DATA*POS1*THR;' +
'I4: VIS*GREY_WHALE, DATA*POS1*EIG;' +
'I5: VIS*HALF_TRACK, DATA*POS1*TWO;' +
'I6: VIS*ORGAN, DATA*POS1*ONE')
stim_presets['darpa_combined_test2'] = \
('%I1+I2+I3%{A9?#POLICE_VAN,X?#PUCK,X?#GREY_WHALE,X:4}',
'I1: VIS*GREY_WHALE, DATA*POS1*NIN;' +
'I2: VIS*POLICE_VAN, DATA*POS1*SEV;' +
'I3: VIS*PUCK, DATA*POS1*THR;' +
'I4: VIS*GREY_WHALE, DATA*POS1*EIG;' +
'I5: VIS*HALF_TRACK, DATA*POS1*TWO;' +
'I6: VIS*ORGAN, DATA*POS1*ONE')
stim_presets['darpa_combined_test3'] = \
('%I1+I2+I3%{A9?#1,X?#2,X?#3,X:5}',
'I1: VIS*ONE, DATA*POS1*NIN;' +
'I2: VIS*TWO, DATA*POS1*SEV;' +
'I3: VIS*THR, DATA*POS1*THR;' +
'I4: VIS*FOR, DATA*POS1*EIG;' +
'I5: VIS*THR, DATA*POS1*TWO;' +
'I6: VIS*FIV, DATA*POS1*ONE')
stim_presets['CBC_combined'] = \
('%I1+I2+I3%{A9?#POLICE_VAN,X?#PUCK,X?#GREY_WHALE,X:1}' +
'%I4+I5+I6%{A9?#ORGAN,X?#GREY_WHALE,X?#HALF_TRACK,X:1}',
'I1: VIS*GREY_WHALE, DATA*POS1*NIN;' +
'I2: VIS*POLICE_VAN, DATA*POS1*SEV;' +
'I3: VIS*PUCK, DATA*POS1*THR;' +
'I4: VIS*GREY_WHALE, DATA*POS1*EIG;' +
'I5: VIS*HALF_TRACK, DATA*POS1*TWO;' +
'I6: VIS*ORGAN, DATA*POS1*ONE')
# Thesis instruction following delayed instr stim list task (single task, changing list length)
stim_resp_i = 'I1: VIS*ONE, DATA*(POS1*NIN + POS2*EIG + POS3*SEV + POS4*SIX);' + \
'I2: VIS*TWO, DATA*(POS1*NIN + POS2*EIG + POS3*SEV + POS4*SIX + POS5*FIV);' + \
'I3: VIS*THR, DATA*(POS1*NIN + POS2*EIG + POS3*SEV + POS4*SIX + POS5*FIV + POS6*FOR);' + \
'I4: VIS*FOR, DATA*(POS1*NIN + POS2*EIG + POS3*SEV + POS4*SIX + POS5*FIV + POS6*FOR + POS7*THR);' + \
'I5: VIS*FIV, DATA*(POS1*ZER + POS2*ONE + POS3*TWO + POS4*THR);' + \
'I6: VIS*SIX, DATA*(POS1*ZER + POS2*ONE + POS3*TWO + POS4*THR + POS5*FOR);' + \
'I7: VIS*SEV, DATA*(POS1*ZER + POS2*ONE + POS3*TWO + POS4*THR + POS5*FOR + POS6*FIV);' + \
'I8: VIS*EIG, DATA*(POS1*ZER + POS2*ONE + POS3*TWO + POS4*THR + POS5*FOR + POS6*FIV + POS7*SIX)'
stim_presets['delay_instr_stim_resp_4'] = \
('%I1%{M1.?XXXXX:5}%I5%{M5.?XXXXX:5}', stim_resp_i)
stim_presets['delay_instr_stim_resp_5'] = \
('%I2%{M2.?XXXXXX:5}%I6%{M6.?XXXXXX:5}', stim_resp_i)
stim_presets['delay_instr_stim_resp_6'] = \
('%I3%{M3.?XXXXXXX:5}%I7%{M7.?XXXXXXX:5}', stim_resp_i)
stim_presets['delay_instr_stim_resp_7'] = \
('%I4%{M4.?XXXXXXXX:5}%I8%{M8.?XXXXXXXX:5}', stim_resp_i)
# -------------------------- Thesis Presets -----------------------------------
# Thesis instruction following custom tasks test
stim_resp_i = 'I1: POS1, TASK*A;' + \
'I2: POS2, TASK*A + STATE*QAK;' + \
'I3: POS3, TASK*A + STATE*QAP'
stim_presets['instr_custom0'] = \
('%I1+I2+I3%MP1.[2764]P[3]?XV.[2]?XV.[2]?X', stim_resp_i)
stim_resp_i = 'I1: POS1, TASK*V;' + \
'I2: POS2, TASK*M;' + \
'I3: POS3, TASK*V + STATE*TRANS1'
stim_presets['instr_custom1'] = \
('%I1+I2+I3%MP1.[1][3][2][4]V.[472]V.?XXX', stim_resp_i)
stim_resp_i = 'I1: POS1, TASK*M;' + \
'I2: POS2, TASK*C + STATE*CNT0;' + \
'I3: POS3, TASK*A'
stim_presets['instr_custom2'] = \
('%I1+I2+I3%MP1.[326]V.[3]?XXXXXV.P[2]?X', stim_resp_i)
stim_resp_i = 'I1: POS1, TASK*V;' + \
'I2: POS2, TASK*A;' + \
'I3: POS3, TASK*F + STATE*TRANS1;' + \
'I4: POS4, TASK*F + STATE*TRANS2'
stim_presets['instr_custom3'] = \
('%I1+I2+I3+I4%MP1.[1][3][2][4]V.[472]P[2]?XXV.?XXXXV.?XX', stim_resp_i)
# Thesis demo graphs
stim_resp_i = 'I1: VIS*ONE, DATA*POS1*EIG;' + \
'I2: VIS*TWO, DATA*POS1*ONE;' + \
'I3: VIS*ONE, DATA*POS1*TWO;' + \
'I4: VIS*TWO, DATA*POS1*EIG'
stim_presets['instr_demo_stage2'] = \
('%I1+I2%A9?1X?2X%I3+I4%A9?1X?2X', stim_resp_i)
stim_presets['instr_demo_stage3'] = \
('%I1+I2%M1?X2?X%I3+I4%M1?X2?X', stim_resp_i)
stim_resp_i = 'I1: VIS*ONE, TASK*M;' + \
'I2: VIS*TWO, TASK*A;' + \
'I3: VIS*ONE, TASK*C'
stim_presets['instr_demo_stage4'] = \
('%I1+I2%M1.[523]?XXXXM2.[679]P[2]?XX%I3%M1.[5][2]?XXXX', stim_resp_i)
stim_resp_i = 'I1: POS1, TASK*C;' + \
'I2: POS2, TASK*M'
stim_presets['instr_demo_stage5'] = \
('%I1+I2%MP2.[154]?XXXMP1.[6][1]?XXV.[83]?XX', stim_resp_i)
# ----- Configuration presets -----
cfg_presets = {}
cfg_presets['mtr_adapt_qvelff'] = ["mtr_dyn_adaptation=True",
"mtr_forcefield='QVelForcefield'"]
cfg_presets['mtr_adapt_constff'] = ["mtr_dyn_adaptation=True",
"mtr_forcefield='ConstForcefield'"]
cfg_presets['vis_imagenet'] = ["stim_module='imagenet'",
"vis_module='lif_imagenet'"]
cfg_presets['vis_imagenet_wta'] = ["stim_module='imagenet'",
"vis_module='lif_imagenet_wta'"]
# Darpa adaptive motor demo configs
cfg_presets['darpa_adapt_qvelff_demo'] = \
["mtr_dyn_adaptation=True", "mtr_forcefield='QVelForcefield'",
"probe_graph_config='ProbeCfgDarpaMotor'"]
cfg_presets['darpa_adapt_constff_demo'] = \
["mtr_dyn_adaptation=True", "mtr_forcefield='ConstForcefield'",
"probe_graph_config='ProbeCfgDarpaMotor'"]
# Darpa imagenet demo configs
cfg_presets['darpa_vis_imagenet'] = \
["stim_module='imagenet'", "vis_module='lif_imagenet'",
"probe_graph_config='ProbeCfgDarpaVisionImagenet'"]
cfg_presets['darpa_vis_imagenet_wta'] = \
["stim_module='imagenet'", "vis_module='lif_imagenet_wta'",
"probe_graph_config='ProbeCfgDarpaVisionImagenet'"]
# Darpa imagenet + instruction following + adaptive motor configs
cfg_presets['darpa_combined_demo'] = \
["mtr_dyn_adaptation=True", "mtr_forcefield='QVelForcefield'",
"stim_module='imagenet'", "vis_module='lif_imagenet'",
"probe_graph_config='ProbeCfgDarpaImagenetAdaptMotor'"]
cfg_presets['darpa_combined_noadapt_demo'] = \
["mtr_dyn_adaptation=False", "mtr_forcefield='QVelForcefield'",
"stim_module='imagenet'", "vis_module='lif_imagenet'",
"probe_graph_config='ProbeCfgDarpaImagenetAdaptMotor'"]
cfg_presets['cbc_combined_noadapt_demo'] = \
["mtr_dyn_adaptation=False",
"stim_module='imagenet'", "vis_module='lif_imagenet'",
"probe_graph_config='ProbeCfgVisMtrMemSpikes'"]
# ----- Definite maximum probe time (if est_sim_time > max_probe_time,
# disable probing)
max_probe_time = 80
# ----- Add current directory to system path ---
cur_dir = os.getcwd()
# ----- Parse arguments -----
parser = argparse.ArgumentParser(description='Script for running Spaun.')
parser.add_argument(
'-d', type=int, default=def_dim,
help='Number of dimensions to use for the semantic pointers.')
parser.add_argument(
'--modules', type=str, default=None,
help='A string of characters that determine what Spaun modules to ' +
'include when building Spaun: \n' +
'S: Stimulus and monitor modules\n' +
'V: Vision module\n' +
'P: Production system module\n' +
'R: Reward system module\n' +
'E: Encoding system module\n' +
'W: Working memory module\n' +
'T: Transformation system module\n' +
'D: Decoding system module\n' +
'M: Motor system module\n' +
'I: Instruction processing module\n' +
'E.g. For all modules, provide "SVPREWTDMI". Note: Provide a "-" ' +
'as the first character to exclude all modules listed. E.g. To ' +
'exclude instruction processing module, provide "-I". ')
parser.add_argument(
'-t', type=float, default=-1,
help=('Simulation run time in seconds. If undefined, will be estimated' +
' from the stimulus sequence.'))
parser.add_argument(
'-n', type=int, default=1,
help='Number of batches to run (each batch is a new model).')
parser.add_argument(
'-s', type=str, default=def_seq,
help='Stimulus sequence. Use digits to use canonical digits, prepend a ' +
'"#" to a digit to use handwritten digits, a "[" for the open ' +
'bracket, a "]" for the close bracket, and a "X" for each expected ' +
'motor response. e.g. A3[1234]?XXXX or A0[#1]?X')
# Stimulus formats:
# Special characters - A [ ] ?
# To denote Spaun stereotypical numbers: 0 1 2 3 4 5 6 7 8 9
# To denote spaces for possible answers: X
# To denote specific image classes: #0 or #100, (either a # or non-digit will
# partition numbers)
# To denote a image chosen using an array index: <1000>
# To denote random numbers chosen without replacement: N
# To denote random numbers chosen with replacement: R
# To denote 'reverse' option for memory task: B
# To denote matched random digits (with replacement): a - z (lowercase char)
# To denote forced blanks: .
# To denote changes in given instructions (see below): %INSTR_STR%
# Note:
# Stimulus string can be duplicated using the curly braces in the format:
# {<STIM_STR>:<DUPLICATION AMOUNT>}, e.g.,
# {A3[RRR]?XXX:10}
parser.add_argument(
'-i', type=str, default=def_i,
help='Instructions event sequence. Use the following format to provide ' +
'customized instructions to spaun (which can then be put into the ' +
'stimulus string using %%INSTR_KEYN+INSTR_KEYM%%": ' +
'"INSTR_KEY: ANTECEDENT_SP_STR, CONSEQUENCE_SP_STR; ..."' +
'e.g. "I1: TASK*INSTR + VIS*ONE, TRFM*POS1*THR", and the stimulus ' +
'string: "%%I1+I2%%A0[0]?XX"')
# Note: For sequential position instructions, instruction must be encoded with
# POS sp. E.g. I1: POS1+VIS*ONE, TASK*C
parser.add_argument(
'--stim_preset', type=str, default='',
help='Stimulus (stimulus sequence and instruction sequence pairing) to ' +
'use for Spaun stimulus. Overrides -s and -i command line options ' +
'if they are provided.')
parser.add_argument(
'-b', type=str, default='ref',
help='Backend to use for Spaun. One of ["ref", "ocl", "mpi", "spinn"]')
parser.add_argument(
'--data_dir', type=str, default=os.path.join(cur_dir, 'data'),
help='Directory to store output data.')
parser.add_argument(
'--noprobes', action='store_true',
help='Supply to disable probes.')
parser.add_argument(
'--probeio', action='store_true',
help='Supply to generate probe data for spaun inputs and outputs.' +
'(recorded in a separate probe data file)')
parser.add_argument(
'--seed', type=int, default=-1,
help='Random seed to use.')
parser.add_argument(
'--showgrph', action='store_true',
help='Supply to show graphing of probe data.')
parser.add_argument(
'--showanim', action='store_true',
help='Supply to show animation of probe data.')
parser.add_argument(
'--showiofig', action='store_true',
help='Supply to show Spaun input/output figure.')
parser.add_argument(
'--tag', type=str, default="",
help='Tag string to apply to probe data file name.')
parser.add_argument(
'--enable_cache', action='store_true',
help='Supply to use nengo caching system when building the nengo model.')
parser.add_argument(
'--ocl', action='store_true',
help='Supply to use the OpenCL backend (will override -b).')
parser.add_argument(
'--ocl_platform', type=int, default=-1,
help=('OCL Only: List index of the OpenCL platform to use. OpenCL ' +
' backend can be listed using "pyopencl.get_platforms()"'))
parser.add_argument(
'--ocl_device', type=int, default=-1,
help=('OCL Only: List index of the device on the OpenCL platform to use.' +
' OpenCL devices can be listed using ' +
'"pyopencl.get_platforms()[X].get_devices()" where X is the index ' +
'of the plaform to use.'))
parser.add_argument(
'--ocl_profile', action='store_true',
help='Supply to use NengoOCL profiler.')
parser.add_argument(
'--mpi', action='store_true',
help='Supply to use the MPI backend (will override -b).')
parser.add_argument(
'--mpi_save', type=str, default='spaun.net',
help=('MPI Only: Filename to use to write the generated Spaun network ' +
'to. Defaults to "spaun.net". *Note: Final filename includes ' +
'neuron type, dimensionality, and stimulus information.'))
parser.add_argument(
'--mpi_p', type=int, default=def_mpi_p,
help='MPI Only: Number of processors to use.')
parser.add_argument(
'--mpi_p_auto', action='store_true',
help='MPI Only: Use the automatic partitioner')
parser.add_argument(
'--mpi_compress_save', action='store_true',
help='Supply to compress the saved net file with gzip.')
parser.add_argument(
'--spinn', action='store_true',
help='Supply to use the SpiNNaker backend (will override -b).')
parser.add_argument(
'--nengo_gui', action='store_true',
help='Supply to use the nengo_viz vizualizer to run Spaun.')
parser.add_argument(
'--config', type=str, nargs='*',
help="Use to set the various parameters in Spaun's configuration. Takes" +
" arguments in list format. Each argument should be in the format" +
" ARG_NAME=ARG_VALUE. " +
"\nE.g. --config sim_dt=0.002 mb_gate_scale=0.8 " +
"\"raw_seq_str='A1[123]?XX'\"" +
"\nNOTE: Will override all other options that set configuration" +
" options (i.e. --seed, --d, --s)" +
'\nNOTE: Use quotes (") to encapsulate strings if you encounter' +
' problems.')
parser.add_argument(
'--config_presets', type=str, nargs='*',
help="Use to provide preset configuration options (which can be " +
"individually provided using --config). Appends to list of " +
"configuration options provided through --config.")
parser.add_argument(
'--debug', action='store_true',
help='Supply to output debug stuff.')
args = parser.parse_args()
# ----- Nengo RC Cache settings -----
# Disable cache unless seed is set (i.e. seed > 0) or if the '--enable_cache'
# option is given
if args.seed > 0 or args.enable_cache:
print("USING CACHE")
nengo.rc.set("decoder_cache", "enabled", "True")
else:
print("NOT USING CACHE")
nengo.rc.set("decoder_cache", "enabled", "False")
# ----- Backend Configurations -----
cfg.backend = args.b
if args.ocl:
cfg.backend = 'ocl'
if args.mpi:
cfg.backend = 'mpi'
if args.spinn:
cfg.backend = 'spinn'
print("BACKEND: %s" % cfg.backend.upper())
# ----- Stimulus sequence settings -----
if args.stim_preset in stim_presets:
stim_seq_str, instr_seq_str = stim_presets[args.stim_preset]
else:
stim_seq_str = args.s
instr_seq_str = args.i
# ----- Gather configuration (from --config and --config_presets) settings ----
config_list = []
if args.config is not None:
config_list += args.config
if args.config_presets is not None:
for preset_name in args.config_presets:
if preset_name in cfg_presets:
config_list += cfg_presets[preset_name]
# ----- Batch runs -----
for n in range(args.n):
print("\n======================== RUN %i OF %i ========================" %
(n + 1, args.n))
# ----- Seeeeeeeed -----
if args.seed < 0:
seed = int(time.time())
else:
seed = args.seed
cfg.set_seed(seed)
print("MODEL SEED: %i" % cfg.seed)
# ----- Model Configurations -----
vocab.sp_dim = args.d
cfg.data_dir = args.data_dir
# Parse --config options
if len(config_list) > 0:
print("USING CONFIGURATION OPTIONS: ")
for cfg_options in config_list:
cfg_opts = cfg_options.split('=')
cfg_param = cfg_opts[0]
cfg_value = cfg_opts[1]
if hasattr(cfg, cfg_param):
print(" * cfg: " + str(cfg_options))
setattr(cfg, cfg_param, eval(cfg_value))
elif hasattr(experiment, cfg_param):
print(" * experiment: " + str(cfg_options))
setattr(experiment, cfg_param, eval(cfg_value))
elif hasattr(vocab, cfg_param):
print(" * vocab: " + str(cfg_options))
setattr(vocab, cfg_param, eval(cfg_value))
# ----- Check if data folder exists -----
if not(os.path.isdir(cfg.data_dir) and os.path.exists(cfg.data_dir)):
raise RuntimeError('Data directory "%s"' % (cfg.data_dir) +
' does not exist. Please ensure the correct path' +
' has been specified.')
# ----- Spaun imports -----
from _spaun.utils import get_total_n_neurons
from _spaun.spaun_main import Spaun
from _spaun.modules.stim import stim_data
from _spaun.modules.vision import vis_data
from _spaun.modules.motor import mtr_data
# ----- Enable debug logging -----
if args.debug:
nengo.log('debug')
# ----- Experiment and vocabulary initialization -----
experiment.initialize(stim_seq_str, stim_data.get_image_ind,
stim_data.get_image_label,
cfg.mtr_est_digit_response_time, instr_seq_str,
cfg.rng)
vocab.initialize(stim_data.stim_SP_labels, experiment.num_learn_actions,
cfg.rng)
vocab.initialize_mtr_vocab(mtr_data.dimensions, mtr_data.sps)
vocab.initialize_vis_vocab(vis_data.dimensions, vis_data.sps)
# ----- Spaun module configuration -----
if args.modules is not None:
used_modules = cfg.spaun_modules
arg_modules = args.modules.upper()
if arg_modules[0] == '-':
used_modules = \
''.join([s if s not in arg_modules else ''
for s in used_modules])
else:
used_modules = arg_modules
cfg.spaun_modules = used_modules
# ----- Configure output log files -----
if cfg.use_mpi:
sys.path.append('C:\\Users\\xchoo\\GitHub\\nengo_mpi')
mpi_save = args.mpi_save.split('.')
mpi_savename = '.'.join(mpi_save[:-1])
mpi_saveext = mpi_save[-1]
cfg.probe_data_filename = get_probe_data_filename(mpi_savename,
suffix=args.tag)
else:
cfg.probe_data_filename = get_probe_data_filename(suffix=args.tag)
# ----- Initalize looger and write header data -----
logger.initialize(cfg.data_dir, cfg.probe_data_filename[:-4] + '_log.txt')
logger.write('# Spaun Command Line String:\n')
logger.write('# -------------------------\n')
logger.write('# python ' + ' '.join(sys.argv) + '\n')
logger.write('#\n')
cfg.write_header()
experiment.write_header()
vocab.write_header()
logger.flush()
# ----- Raw stimulus seq -----
print("RAW STIM SEQ: %s" % (str(experiment.raw_seq_str)))
# ----- Spaun proper -----
model = Spaun()
# ----- Display stimulus seq -----
print("PROCESSED RAW STIM SEQ: %s" % (str(experiment.raw_seq_list)))
print("STIMULUS SEQ: %s" % (str(experiment.stim_seq_list)))
# ----- Calculate runtime -----
# Note: Moved up here so that we have data to disable probes if necessary
runtime = args.t if args.t > 0 else experiment.get_est_simtime()
# ----- Set up probes -----
from _spaun import probes as probe_module
make_probes = not args.noprobes
if runtime > max_probe_time and make_probes:
print(">>> !!! WARNING !!! EST RUNTIME > %0.2fs - DISABLING PROBES" %
max_probe_time)
make_probes = False
if make_probes:
print("PROBE FILENAME: %s" % cfg.probe_data_filename)
default_probe_config = getattr(probe_module, cfg.probe_graph_config)
probe_cfg = default_probe_config(model, vocab, cfg.sim_dt,
cfg.data_dir,
cfg.probe_data_filename)
# ----- Set up animation probes -----
if args.showanim or args.showiofig or args.probeio:
anim_probe_data_filename = cfg.probe_data_filename[:-4] + '_anim.npz'
default_anim_config = getattr(probe_module, cfg.probe_anim_config)
print("ANIM PROBE FILENAME: %s" % anim_probe_data_filename)
probe_anim_cfg = default_anim_config(model, vocab,
cfg.sim_dt, cfg.data_dir,
anim_probe_data_filename)
# ----- Neuron count debug -----
print("MODEL N_NEURONS: %i" % (get_total_n_neurons(model)))
if hasattr(model, 'vis'):
print("- vis n_neurons: %i" % (get_total_n_neurons(model.vis)))
if hasattr(model, 'ps'):
print("- ps n_neurons: %i" % (get_total_n_neurons(model.ps)))
if hasattr(model, 'reward'):
print("- rewrd n_neurons: %i" % (get_total_n_neurons(model.reward)))
if hasattr(model, 'bg'):
print("- bg n_neurons: %i" % (get_total_n_neurons(model.bg)))
if hasattr(model, 'thal'):
print("- thal n_neurons: %i" % (get_total_n_neurons(model.thal)))
if hasattr(model, 'enc'):
print("- enc n_neurons: %i" % (get_total_n_neurons(model.enc)))
if hasattr(model, 'mem'):
print("- mem n_neurons: %i" % (get_total_n_neurons(model.mem)))
if hasattr(model, 'trfm'):
print("- trfm n_neurons: %i" % (get_total_n_neurons(model.trfm)))
if hasattr(model, 'instr'):
print("- instr n_neurons: %i" % (get_total_n_neurons(model.instr)))
if hasattr(model, 'dec'):
print("- dec n_neurons: %i" % (get_total_n_neurons(model.dec)))
if hasattr(model, 'mtr'):
print("- mtr n_neurons: %i" % (get_total_n_neurons(model.mtr)))
# ----- Connections count debug -----
print("MODEL N_CONNECTIONS: %i" % (len(model.all_connections)))
# ----- Spaun simulation build -----
print("START BUILD")
timestamp = time.time()
if args.nengo_gui:
# Set environment variables (for nengo_gui)
if cfg.use_opencl:
if args.ocl_platform >= 0 and args.ocl_device >= 0:
os.environ['PYOPENCL_CTX'] = '%s:%s' % (args.ocl_platform,
args.ocl_device)
else:
raise RuntimeError('Error - OCL platform and device must be' +
'specified when using ocl with nengo_gui.' +
' Use the --ocl_platform and --ocl_device' +
' argument options to set.')
print("STARTING NENGO_GUI")
import nengo_gui
nengo_gui.GUI(__file__, model=model, locals=locals(),
editor=False).start()
print("NENGO_GUI STOPPED")
sys.exit()
if cfg.use_opencl:
import pyopencl as cl
import nengo_ocl
print("------ OCL ------")
print("AVAILABLE PLATFORMS:")
print(' ' + '\n '.join(map(str, cl.get_platforms())))
if args.ocl_platform >= 0:
pltf = cl.get_platforms()[args.ocl_platform]
print("USING PLATFORM:")
print(' ' + str(pltf))
print("AVAILABLE DEVICES:")
print(' ' + '\n '.join(map(str, pltf.get_devices())))
if args.ocl_device >= 0:
ctx = cl.Context([pltf.get_devices()[args.ocl_device]])
print("USING DEVICE:")
print(' ' + str(pltf.get_devices()[args.ocl_device]))
else:
ctx = cl.Context(pltf.get_devices())
print("USING DEVICES:")
print(' ' + '\n '.join(map(str, pltf.get_devices())))
sim = nengo_ocl.Simulator(model, dt=cfg.sim_dt, context=ctx,
profiling=args.ocl_profile)
else:
sim = nengo_ocl.Simulator(model, dt=cfg.sim_dt,
profiling=args.ocl_profile)
elif cfg.use_mpi:
import nengo_mpi
mpi_savefile = \
('+'.join([cfg.get_probe_data_filename(mpi_savename)[:-4],
('%ip' % args.mpi_p if not args.mpi_p_auto else 'autop'),
'%0.2fs' % experiment.get_est_simtime()]) + '.' +
mpi_saveext)
mpi_savefile = os.path.join(cfg.data_dir, mpi_savefile)
print("USING MPI - Saving to: %s" % (mpi_savefile))
if args.mpi_p_auto:
assignments = {}
for n, module in enumerate(model.modules):
assignments[module] = n
sim = nengo_mpi.Simulator(model, dt=cfg.sim_dt,
assignments=assignments,
save_file=mpi_savefile)
else:
partitioner = nengo_mpi.Partitioner(args.mpi_p)
sim = nengo_mpi.Simulator(model, dt=cfg.sim_dt,
partitioner=partitioner,
save_file=mpi_savefile)
else:
sim = nengo.Simulator(model, dt=cfg.sim_dt)
t_build = time.time() - timestamp
timestamp = time.time()
print("BUILD FINISHED - build time: %fs" % t_build)
# ----- Spaun simulation run -----
experiment.reset()
if cfg.use_opencl or cfg.use_ref:
print("START SIM - est_runtime: %f" % runtime)
sim.run(runtime)
# Close output logging file
logger.close()
if args.ocl_profile:
sim.print_plans()
sim.print_profiling()
t_simrun = time.time() - timestamp
print("MODEL N_NEURONS: %i" % (get_total_n_neurons(model)))
print("FINISHED! - Build time: %fs, Sim time: %fs" % (t_build,
t_simrun))
else:
print("MODEL N_NEURONS: %i" % (get_total_n_neurons(model)))
print("FINISHED! - Build time: %fs" % (t_build))
if args.mpi_compress_save:
import gzip
print("COMPRESSING net file to '%s'" % (mpi_savefile + '.gz'))
with open(mpi_savefile, 'rb') as f_in:
with gzip.open(mpi_savefile + '.gz', 'wb') as f_out:
f_out.writelines(f_in)
os.remove(mpi_savefile)
print("UPLOAD '%s' to MPI cluster and decompress to run" %
(mpi_savefile + '.gz'))
else:
print("UPLOAD '%s' to MPI cluster to run" % mpi_savefile)
t_simrun = -1
# ----- Generate debug printouts -----
n_bytes_ev = 0
n_bytes_gain = 0
n_bytes_bias = 0
n_ens = 0
for ens in sim.model.toplevel.all_ensembles:
n_bytes_ev += sim.model.params[ens].eval_points.nbytes
n_bytes_gain += sim.model.params[ens].gain.nbytes
n_bytes_bias += sim.model.params[ens].bias.nbytes
n_ens += 1
if args.debug:
print("## DEBUG: num bytes used for eval points: %s B" %
("{:,}".format(n_bytes_ev)))
print("## DEBUG: num bytes used for gains: %s B" %
("{:,}".format(n_bytes_gain)))
print("## DEBUG: num bytes used for biases: %s B" %
("{:,}".format(n_bytes_bias)))
print("## DEBUG: num ensembles: %s" % n_ens)
# ----- Close simulator -----
if hasattr(sim, 'close'):
sim.close()
# ----- Write probe data to file -----
logger.write("\n\n# Command line options for displaying recorded probed " +
"data:")
logger.write("\n# ------------------------------------------------------" +
"---")
if make_probes and not cfg.use_mpi:
print("WRITING PROBE DATA TO FILE")
probe_cfg.write_simdata_to_file(sim, experiment)
# Assemble graphing subprocess call string
subprocess_call_list = ["python",
os.path.join(cur_dir,
'disp_probe_data.py'),
'"' + cfg.probe_data_filename + '"',
'--data_dir', '"' + cfg.data_dir + '"',
'--showgrph']
# Log subprocess call
logger.write("\n#\n# To display graphs of the recorded probe data:")
logger.write("\n# > " + " ".join(subprocess_call_list))
if args.showgrph:
# Open subprocess
print("CALLING: \n%s" % (" ".join(subprocess_call_list)))
import subprocess
subprocess.Popen(subprocess_call_list)
if (args.showanim or args.showiofig or args.probeio) and not cfg.use_mpi:
print("WRITING ANIMATION PROBE DATA TO FILE")
probe_anim_cfg.write_simdata_to_file(sim, experiment)
# Assemble graphing subprocess call string
subprocess_call_list = ["python",
os.path.join(cur_dir,
'disp_probe_data.py'),
'"' + anim_probe_data_filename + '"',
'--data_dir', '"' + cfg.data_dir + '"']
# Log subprocess call
logger.write("\n#\n# To display Spaun's input/output plots:")
logger.write("\n# > " + " ".join(subprocess_call_list +
['--showiofig']))
logger.write("\n#\n# To display Spaun's input/output animation:")
logger.write("\n# > " + " ".join(subprocess_call_list +
['--showanim']))
logger.write("\n# (Flags can be combined to display both plots and" +
" animations)")
if args.showanim:
subprocess_call_list += ['--showanim']
if args.showiofig:
subprocess_call_list += ['--showiofig']
if args.showanim or args.showiofig:
# Open subprocess
print("CALLING: \n%s" % (" ".join(subprocess_call_list)))
import subprocess
subprocess.Popen(subprocess_call_list)
if not (make_probes or args.showanim or args.showiofig or args.probeio):
logger.write("\n# run_spaun.py was not instructed to record probe " +
"data.")
# ----- Write runtime data -----
runtime_filename = os.path.join(cfg.data_dir, 'runtimes.txt')
rt_file = open(runtime_filename, 'a')
rt_file.write('# ---------- TIMESTAMP: %i -----------\n' % timestamp)
rt_file.write('Backend: %s | Num neurons: %i | Tag: %s | Seed: %i\n' %
(cfg.backend, get_total_n_neurons(model), args.tag,
cfg.seed))
if args.config is not None:
rt_file.write('Config options: %s\n' % (str(args.config)))
rt_file.write('Build time: %fs | Model sim time: %fs | ' % (t_build,
runtime))
rt_file.write('Sim wall time: %fs\n' % (t_simrun))
rt_file.close()
# ----- Cleanup -----
model = None
sim = None
probe_data = None