forked from JoeMcEwen/FAST-PT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFASTPT.py
723 lines (554 loc) · 23.9 KB
/
FASTPT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
'''
FASTPT is a numerical algorithm to calculate
1-loop contributions to the matter power spectrum
and other integrals of a similar type.
The method is presented in papers arXiv:1603.04826 and arXiv:1609.05978
Please cite these papers if you are using FASTPT in your research.
Joseph E. McEwen (c) 2016
Xiao Fang
Jonathan A. Blazek
FFFFFFFF A SSSSSSSSS TTTTTTTTTTTTTT PPPPPPPPP TTTTTTTTTTTT
FF A A SS TT PP PP TT
FF A A SS TT PP PP TT
FFFFF AAAAAAA SSSSSSSS TT ========== PPPPPPPPP TT
FF AA AA SS TT PP TT
FF AA AA SS TT PP TT
FF AA AA SSSSSSSSS TT PP TT
The FASTPT class is the workhorse of the FASTPT algorithm.
This class calculates integrals of the form:
\int \frac{d^3q}{(2 \pi)^3} K(q,k-q) P(q) P(|k-q|)
\int \frac{d^3q_1}{(2 \pi)^3} K(\hat{q_1} \dot \hat{q_2},\hat{q_1} \dot \hat{k}, \hat{q_2} \dot \hat{k}, q_1, q_2) P(q_1) P(|k-q_1|)
'''
from __future__ import division
from __future__ import print_function
from info import __version__
import numpy as np
from numpy.fft import fft, ifft , rfft, irfft , fftfreq
from numpy import exp, log, log10, cos, sin, pi, cosh, sinh , sqrt
from scipy.special import gamma
from scipy.signal import fftconvolve
from fastpt_extr import p_window, c_window, pad_left, pad_right
from matter_power_spt import P_13_reg
from initialize_params import scalar_stuff, tensor_stuff
from IA_tt import IA_tt
from IA_ABD import IA_A, IA_DEE, IA_DBB, P_IA_B
from IA_ta import IA_deltaE1, P_IA_deltaE2, IA_0E0E, IA_0B0B
from OV import OV
from kPol import kPol
from RSD import RSDA, RSDB
import RSD_ItypeII
from P_extend import k_extend
import FASTPT_simple as fastpt_simple
log2=log(2.)
class FASTPT:
def __init__(self,k,nu=None,to_do=None,param_mat=None,low_extrap=None,high_extrap=None,n_pad=None,verbose=False):
''' inputs:
* k grid
* the to_do list: e.g. one_loop density density , bias terms, ...
* low_extrap is the call to extrapolate the power spectrum to lower k-values,
this helps with edge effects
* n_pad is the number of zeros to add to both ends of the array. This helps with
edge effects.
* verbose is to turn on verbose settings.
'''
# if no to_do list is given, default to fastpt_simple SPT case
if (to_do is None):
if (verbose):
print('Note: You are using an earlier call structure for FASTPT. Your code will still run correctly, calling FASTPT_simple. See user manual.')
if (nu is None):# give a warning if nu=None that a default value is being used.
print('WARNING: No value for nu is given. FASTPT_simple is being called with a default of nu=-2')
nu=-2 #this is the default value for P22+P13 and bias calculation
self.pt_simple=fastpt_simple.FASTPT(k,nu,param_mat=param_mat,low_extrap=low_extrap,high_extrap=high_extrap,n_pad=n_pad,verbose=verbose)
return None
# Exit initialization here, since fastpt_simple performs the various checks on the k grid and does extrapolation.
# check for log spacing
print('Initializing k-grid quantities...')
dk=np.diff(np.log(k))
#dk_test=np.ones_like(dk)*dk[0]
delta_L=(log(k[-1])-log(k[0]))/(k.size-1)
dk_test=np.ones_like(dk)*delta_L
log_sample_test='ERROR! FASTPT will not work if your in put (k,Pk) values are not sampled evenly in log space!'
np.testing.assert_array_almost_equal(dk, dk_test, decimal=4, err_msg=log_sample_test, verbose=False)
if (verbose):
print('the minumum and maximum inputed log10(k) are :', np.min(np.log10(k)),np.max(np.log10(k)))
print('the grid spacing Delta log (k) is', (log(np.max(k))-log(np.min(k)))/(k.size-1))
print('number of input k points are', k.size)
print('the power spectrum is extraplated to log10(k_min)=', low_extrap)
print('the power spectrum is extraplated to log10(k_max)=', high_extrap)
print('the power spectrum has ', n_pad,' zeros added to both ends of the power spectrum')
self.k_original=k
self.extrap=False
if (low_extrap is not None or high_extrap is not None):
self.EK=k_extend(k,low_extrap,high_extrap)
k=self.EK.extrap_k()
self.extrap=True
self.low_extrap=low_extrap
self.high_extrap=high_extrap
self.k_old=k
#print(self.k_old.size, 'k size')
# size of input array must be an even number
if (k.size % 2 != 0):
raise ValueError('Input array must contain an even number of elements.')
if(n_pad != None):
self.id_pad=np.arange(k.size)+n_pad
d_logk=delta_L
k_pad=np.log(k[0])-np.arange(1,n_pad+1)*d_logk
k_pad=np.exp(k_pad)
k_left=k_pad[::-1]
k_pad=np.log(k[-1])+np.arange(1,n_pad+1)*d_logk
k_right=np.exp(k_pad)
k=np.hstack((k_left,k,k_right))
n_pad_check=int(np.log(2)/delta_L) +1
if (n_pad < n_pad_check):
print('*** Warning ***')
print('You should consider increasing your zero padding to at least ', n_pad_check)
print('to ensure that the minimum k_output is > 2k_min in the FASTPT universe.')
print('k_min in the FASTPT universe is ', k[0], ' while k_min_input is ', self.k_old[0])
self.k=k
self.k_size=k.size
#self.scalar_nu=-2
self.N=k.size
# define eta_m and eta_n=eta_m
omega=2*pi/(float(self.N)*delta_L)
self.m=np.arange(-self.N//2,self.N//2+1)
self.eta_m=omega*self.m
self.verbose=verbose
self.n_pad=n_pad
# define l and tau_l
self.n_l=self.m.size + self.m.size - 1
self.l=np.arange(-self.n_l//2+1,self.n_l//2+1)
self.tau_l=omega*self.l
self.dd_do=False
self.dd_bias_do=False
self.IA_tt_do=False
self.IA_ta_do=False
self.IA_mix_do=False
self.OV_do=False
self.kPol_do=False
self.RSD_do=False
for entry in to_do: #convert to_do list to instructions for FAST-PT initialization
if entry=='one_loop_dd':
self.dd_do=True
continue
elif entry=='dd_bias':
self.dd_do=True
self.dd_bias_do=True
continue
elif entry=='IA_all' or entry=='IA':
self.IA_tt_do=True
self.IA_ta_do=True
self.IA_mix_do=True
continue
elif entry=='IA_tt':
self.IA_tt_do=True
continue
elif entry=='IA_ta':
self.IA_ta_do=True
continue
elif entry=='IA_mix':
self.IA_mix_do=True
continue
elif entry=='OV':
self.OV_do=True
continue
elif entry=='kPol':
self.kPol_do=True
continue
elif entry=='RSD':
self.RSD_do=True
continue
elif entry=='sig4':
self.dd_do=True
continue
elif entry=='all' or entry=='everything':
self.dd_do=True
self.dd_bias_do=True
self.IA_tt_do=True
self.IA_ta_do=True
self.IA_mix_do=True
self.OV_do=True
self.kPol_do=True
self.RSD_do=True
continue
else:
raise ValueError('FAST-PT does not recognize "'+entry+'" in the to_do list.')
### INITIALIZATION of k-grid quantities ###
if self.dd_do:
nu=-2
# parameter matrix for 1-loop calculations
p_mat=np.array([[0,0,0,0],[0,0,2,0],[0,0,4,0],[2,-2,2,0],\
[1,-1,1,0],[1,-1,3,0],[2,-2,0,1] ])
self.X_spt=scalar_stuff(p_mat,nu,self.N,self.m,self.eta_m,self.l,self.tau_l)
if self.IA_tt_do:
hE_tab,hB_tab=IA_tt()
p_mat_E=hE_tab[:,[0,1,5,6,7,8,9]]
p_mat_B=hB_tab[:,[0,1,5,6,7,8,9]]
self.X_IA_E=tensor_stuff(p_mat_E,self.N,self.m,self.eta_m,self.l,self.tau_l)
self.X_IA_B=tensor_stuff(p_mat_B,self.N,self.m,self.eta_m,self.l,self.tau_l)
if self.IA_mix_do:
IA_A_tab = IA_A()
IA_DEE_tab = IA_DEE()
IA_DBB_tab = IA_DBB()
p_mat_A=IA_A_tab[:,[0,1,5,6,7,8,9]]
p_mat_DEE=IA_DEE_tab[:,[0,1,5,6,7,8,9]]
p_mat_DBB=IA_DBB_tab[:,[0,1,5,6,7,8,9]]
self.X_IA_A=tensor_stuff(p_mat_A,self.N,self.m,self.eta_m,self.l,self.tau_l)
self.X_IA_DEE=tensor_stuff(p_mat_DEE,self.N,self.m,self.eta_m,self.l,self.tau_l)
self.X_IA_DBB=tensor_stuff(p_mat_DBB,self.N,self.m,self.eta_m,self.l,self.tau_l)
if self.IA_ta_do:
IA_deltaE1_tab = IA_deltaE1()
IA_0E0E_tab = IA_0E0E()
IA_0B0B_tab = IA_0B0B()
p_mat_deltaE1=IA_deltaE1_tab[:,[0,1,5,6,7,8,9]]
p_mat_0E0E=IA_0E0E_tab[:,[0,1,5,6,7,8,9]]
p_mat_0B0B=IA_0B0B_tab[:,[0,1,5,6,7,8,9]]
self.X_IA_deltaE1=tensor_stuff(p_mat_deltaE1,self.N,self.m,self.eta_m,self.l,self.tau_l)
self.X_IA_0E0E=tensor_stuff(p_mat_0E0E,self.N,self.m,self.eta_m,self.l,self.tau_l)
self.X_IA_0B0B=tensor_stuff(p_mat_0B0B,self.N,self.m,self.eta_m,self.l,self.tau_l)
if self.OV_do:
# For OV, we can use two different values for
# nu1=0 and nu2=-2
OV_tab=OV()
p_mat=OV_tab[:,[0,1,5,6,7,8,9]]
self.X_OV=tensor_stuff(p_mat,self.N,self.m,self.eta_m,self.l,self.tau_l)
if self.kPol_do:
tab1,tab2,tab3=kPol()
p_mat=tab1[:,[0,1,5,6,7,8,9]]
self.X_kP1=tensor_stuff(p_mat,self.N,self.m,self.eta_m,self.l,self.tau_l)
p_mat=tab2[:,[0,1,5,6,7,8,9]]
self.X_kP2=tensor_stuff(p_mat,self.N,self.m,self.eta_m,self.l,self.tau_l)
p_mat=tab3[:,[0,1,5,6,7,8,9]]
self.X_kP3=tensor_stuff(p_mat,self.N,self.m,self.eta_m,self.l,self.tau_l)
if self.RSD_do:
tabA,self.A_coeff=RSDA()
p_mat=tabA[:,[0,1,5,6,7,8,9]]
self.X_RSDA=tensor_stuff(p_mat,self.N,self.m,self.eta_m,self.l,self.tau_l)
tabB,self.B_coeff=RSDB()
p_mat=tabB[:,[0,1,5,6,7,8,9]]
self.X_RSDB=tensor_stuff(p_mat,self.N,self.m,self.eta_m,self.l,self.tau_l)
### Top-level functions to output final quantities ###
def one_loop_dd(self,P,P_window=None,C_window=None):
# routine for one-loop DM SPT calculations
nu=-2
# coefficents for one_loop calculation
one_loop_coef=np.array([2*1219/1470.,2*671/1029.,2*32/1715.,2*1/3.,2*62/35.,2*8/35.,1/3.])
# get the roundtrip Fourier power spectrum, i.e. P=IFFT[FFT[P]]
# get the matrix for each J_k component
Ps,mat=self.J_k_scalar(P,self.X_spt,nu,P_window=P_window,C_window=C_window)
P22_mat=np.multiply(one_loop_coef,np.transpose(mat))
P22=np.sum(P22_mat,1)
P13=P_13_reg(self.k_old,Ps)
P_1loop=P22+P13
if (self.dd_bias_do):
# if dd_bias is in to_do, this function acts like one_loop_dd_bias
# Quadraric bias Legendre components
# See eg section B of Baldauf+ 2012 (arxiv: 1201.4827)
# Note pre-factor convention is not standardized
# Returns relevant correlations (including contraction factors),
# but WITHOUT bias values and other pre-factors.
# Uses standard "full initialization" of J terms
sig4=np.trapz(self.k_old**3*Ps**2,x=np.log(self.k_old))/(2.*pi**2)
# sig4 much more accurate when calculated in logk, especially for low-res input.
Pd1d2=2.*(17./21*mat[0,:]+mat[4,:]+4./21*mat[1,:])
Pd2d2=2.*(mat[0,:])
Pd1s2=2.*(8./315*mat[0,:]+4./15*mat[4,:]+254./441*mat[1,:]+2./5*mat[5,:]+16./245*mat[2,:])
Pd2s2=2.*(2./3*mat[1,:])
Ps2s2=2.*(4./45*mat[0,:]+8./63*mat[1,:]+8./35*mat[2,:])
if (self.extrap):
_, Ps=self.EK.PK_original(Ps)
_, P_1loop=self.EK.PK_original(P_1loop)
_, Pd1d2=self.EK.PK_original(Pd1d2)
_, Pd2d2=self.EK.PK_original(Pd2d2)
_, Pd1s2=self.EK.PK_original(Pd1s2)
_, Pd2s2=self.EK.PK_original(Pd2s2)
_, Ps2s2=self.EK.PK_original(Ps2s2)
return P_1loop, Ps, Pd1d2, Pd2d2, Pd1s2, Pd2s2, Ps2s2, sig4
if (self.extrap):
_, Ps=self.EK.PK_original(Ps)
_, P_1loop=self.EK.PK_original(P_1loop)
return P_1loop, Ps
def one_loop_dd_bias(self,P,P_window=None,C_window=None):
nu=-2
# routine for one-loop spt calculations
# coefficents for one_loop calculation
one_loop_coef=np.array([2*1219/1470.,2*671/1029.,2*32/1715.,2*1/3.,2*62/35.,2*8/35.,1/3.])
# get the roundtrip Fourier power spectrum, i.e. P=IFFT[FFT[P]]
# get the matrix for each J_k component
Ps,mat=self.J_k_scalar(P,self.X_spt,nu,P_window=P_window,C_window=C_window)
P22_mat=np.multiply(one_loop_coef,np.transpose(mat))
P22=np.sum(P22_mat,1)
P13=P_13_reg(self.k_old,Ps)
P_1loop=P22+P13
# Quadraric bias Legendre components
# See eg section B of Baldauf+ 2012 (arxiv: 1201.4827)
# Note pre-factor convention is not standardized
# Returns relevant correlations (including contraction factors),
# but WITHOUT bias values and other pre-factors.
# Uses standard "full initialization" of J terms
sig4=np.trapz(self.k_old**3*Ps**2,x=np.log(self.k_old))/(2.*pi**2)
Pd1d2=2.*(17./21*mat[0,:]+mat[4,:]+4./21*mat[1,:])
Pd2d2=2.*(mat[0,:])
Pd1s2=2.*(8./315*mat[0,:]+4./15*mat[4,:]+254./441*mat[1,:]+2./5*mat[5,:]+16./245*mat[2,:])
Pd2s2=2.*(2./3*mat[1,:])
Ps2s2=2.*(4./45*mat[0,:]+8./63*mat[1,:]+8./35*mat[2,:])
if (self.extrap):
_, Ps=self.EK.PK_original(Ps)
_, P_1loop=self.EK.PK_original(P_1loop)
_, Pd1d2=self.EK.PK_original(Pd1d2)
_, Pd2d2=self.EK.PK_original(Pd2d2)
_, Pd1s2=self.EK.PK_original(Pd1s2)
_, Pd2s2=self.EK.PK_original(Pd2s2)
_, Ps2s2=self.EK.PK_original(Ps2s2)
return P_1loop, Ps, Pd1d2, Pd2d2, Pd1s2, Pd2s2, Ps2s2, sig4 #new,for consistency
def sig4(self,P,P_window=None,C_window=None):
# returns the integral of P(k)^2 which provides the k->0 limit (up to a pre-factor)
# for several of the quadratic biasing and IA contributions.
nu=-2
Ps,mat=self.J_k_scalar(P,self.X_spt,nu,P_window=P_window,C_window=C_window)
sig4=np.trapz(self.k_old**3*Ps**2,x=np.log(self.k_old))/(2.*pi**2)
return sig4
def IA_tt(self,P,P_window=None,C_window=None):
P_E,A=self.J_k_tensor(P,self.X_IA_E,P_window=P_window,C_window=C_window)
if (self.extrap):
_,P_E=self.EK.PK_original(P_E)
P_B,A=self.J_k_tensor(P,self.X_IA_B,P_window=P_window,C_window=C_window)
if (self.extrap):
_,P_B=self.EK.PK_original(P_B)
return 2.*P_E, 2.*P_B
def IA_mix(self,P,P_window=None,C_window=None):
P_A,A=self.J_k_tensor(P,self.X_IA_A,P_window=P_window,C_window=C_window)
if (self.extrap):
_,P_A=self.EK.PK_original(P_A)
P_Btype2=P_IA_B(self.k_original,P)
P_DEE,A=self.J_k_tensor(P,self.X_IA_DEE,P_window=P_window,C_window=C_window)
if (self.extrap):
_,P_DEE=self.EK.PK_original(P_DEE)
P_DBB,A=self.J_k_tensor(P,self.X_IA_DBB,P_window=P_window,C_window=C_window)
if (self.extrap):
_,P_DBB=self.EK.PK_original(P_DBB)
return 2*P_A, 4*P_Btype2, 2*P_DEE, 2*P_DBB
def IA_ta(self,P,P_window=None,C_window=None):
P_deltaE1,A=self.J_k_tensor(P,self.X_IA_deltaE1,P_window=P_window,C_window=C_window)
if (self.extrap):
_,P_deltaE1=self.EK.PK_original(P_deltaE1)
P_deltaE2=P_IA_deltaE2(self.k_original,P)
P_0E0E,A=self.J_k_tensor(P,self.X_IA_0E0E,P_window=P_window,C_window=C_window)
if (self.extrap):
_,P_0E0E=self.EK.PK_original(P_0E0E)
P_0B0B,A=self.J_k_tensor(P,self.X_IA_0B0B,P_window=P_window,C_window=C_window)
if (self.extrap):
_,P_0B0B=self.EK.PK_original(P_0B0B)
return 2.*P_deltaE1, 2.*P_deltaE2, P_0E0E, P_0B0B
def OV(self,P,P_window=None,C_window=None):
P,A=self.J_k_tensor(P,self.X_OV,P_window=P_window,C_window=C_window)
if (self.extrap):
_,P=self.EK.PK_original(P)
return P*(2*pi)**2
def kPol(self,P,P_window=None,C_window=None):
P1,A=self.J_k_tensor(P,self.X_kP1,P_window=P_window,C_window=C_window)
if (self.extrap):
_,P1=self.EK.PK_original(P1)
P2,A=self.J_k_tensor(P,self.X_kP2,P_window=P_window,C_window=C_window)
if (self.extrap):
_,P2=self.EK.PK_original(P2)
P3,A=self.J_k_tensor(P,self.X_kP3,P_window=P_window,C_window=C_window)
if (self.extrap):
_,P3=self.EK.PK_original(P3)
return P1/(80*pi**2),P2/(160*pi**2),P3/(80*pi**2)
def RSD_components(self,P,f,P_window=None,C_window=None):
_,A=self.J_k_tensor(P,self.X_RSDA,P_window=P_window,C_window=C_window)
A1=np.dot(self.A_coeff[:,0],A) + f*np.dot(self.A_coeff[:,1],A) + f**2*np.dot(self.A_coeff[:,2],A)
A3=np.dot(self.A_coeff[:,3],A) + f*np.dot(self.A_coeff[:,4],A) + f**2*np.dot(self.A_coeff[:,5],A)
A5=np.dot(self.A_coeff[:,6],A) + f*np.dot(self.A_coeff[:,7],A) + f**2*np.dot(self.A_coeff[:,8],A)
_,B=self.J_k_tensor(P,self.X_RSDB,P_window=P_window,C_window=C_window)
B0=np.dot(self.B_coeff[:,0],B) + f*np.dot(self.B_coeff[:,1],B) + f**2*np.dot(self.B_coeff[:,2],B)
B2=np.dot(self.B_coeff[:,3],B) + f*np.dot(self.B_coeff[:,4],B) + f**2*np.dot(self.B_coeff[:,5],B)
B4=np.dot(self.B_coeff[:,6],B) + f*np.dot(self.B_coeff[:,7],B) + f**2*np.dot(self.B_coeff[:,8],B)
B6=np.dot(self.B_coeff[:,9],B) + f*np.dot(self.B_coeff[:,10],B) + f**2*np.dot(self.B_coeff[:,11],B)
if (self.extrap):
_,A1=self.EK.PK_original(A1)
_,A3=self.EK.PK_original(A3)
_,A5=self.EK.PK_original(A5)
_,B0=self.EK.PK_original(B0)
_,B2=self.EK.PK_original(B2)
_,B4=self.EK.PK_original(B4)
_,B6=self.EK.PK_original(B6)
P_Ap1=RSD_ItypeII.P_Ap1(self.k_original,P,f)
P_Ap3=RSD_ItypeII.P_Ap3(self.k_original,P,f)
P_Ap5=RSD_ItypeII.P_Ap5(self.k_original,P,f)
return A1,A3,A5, B0, B2, B4, B6, P_Ap1,P_Ap3,P_Ap5
def RSD_ABsum_components(self,P,f,P_window=None,C_window=None):
A1,A3,A5, B0, B2, B4, B6, P_Ap1,P_Ap3,P_Ap5 = self.RSD_components(P,f,P_window,C_window)
ABsum_mu2 = self.k_original*f*(A1+P_Ap1) + (f*self.k_original)**2 *B0
ABsum_mu4 = self.k_original*f*(A3+P_Ap3) + (f*self.k_original)**2 *B2
ABsum_mu6 = self.k_original*f*(A5+P_Ap5) + (f*self.k_original)**2 *B4
ABsum_mu8 = (f*self.k_original)**2 *B6
return ABsum_mu2,ABsum_mu4,ABsum_mu6,ABsum_mu8
def RSD_ABsum_mu(self,P,f,mu_n,P_window=None,C_window=None):
ABsum_mu2,ABsum_mu4,ABsum_mu6,ABsum_mu8 = self.RSD_ABsum_components(P,f,P_window,C_window)
ABsum = ABsum_mu2*mu_n**2 + ABsum_mu4*mu_n**4 + ABsum_mu6*mu_n**6 + ABsum_mu8*mu_n**8
return ABsum
######################################################################################
### functions that use the older version structures. ###
def one_loop(self,P,P_window=None,C_window=None):
return self.pt_simple.one_loop(P,P_window=P_window,C_window=C_window)
def P_bias(self,P,P_window=None,C_window=None):
return self.pt_simple.P_bias(P,P_window=P_window,C_window=C_window)
######################################################################################
### Core functions used by top-level functions ###
def J_k_scalar(self,P_in,X,nu,P_window=None,C_window=None):
pf, p, g_m, g_n, two_part_l, h_l=X
if(self.low_extrap is not None):
P_in=self.EK.extrap_P_low(P_in)
if(self.high_extrap is not None):
P_in=self.EK.extrap_P_high(P_in)
P_b=P_in*self.k_old**(-nu)
if (self.n_pad is not None):
P_b=np.pad(P_b, pad_width=(self.n_pad,self.n_pad), mode='constant', constant_values=0)
c_m_positive=rfft(P_b)
# We always filter the Fourier coefficients, so the last element is zero.
# But in case someone does not filter, divide the end point by two
c_m_positive[-1]=c_m_positive[-1]/2.
c_m_negative=np.conjugate(c_m_positive[1:])
c_m=np.hstack((c_m_negative[::-1], c_m_positive))/float(self.N)
if (C_window != None):
# Window the Fourier coefficients.
# This will damp the highest frequencies
if (self.verbose):
print('windowing the Fourier coefficients')
c_m=c_m*c_window(self.m,int(C_window*self.N//2.))
A_out=np.zeros((pf.shape[0],self.k_size))
for i in range(pf.shape[0]):
# convolve f_c and g_c
#C_l=np.convolve(c_m*self.g_m[i,:],c_m*self.g_n[i,:])
C_l=fftconvolve(c_m*g_m[i,:],c_m*g_n[i,:])
# multiply all l terms together
C_l=C_l*h_l[i,:]*two_part_l[i]
# set up to feed ifft an array ordered with l=0,1,...,-1,...,N/2-1
c_plus=C_l[self.l>=0]
c_minus=C_l[self.l< 0]
C_l=np.hstack((c_plus[:-1],c_minus))
A_k=ifft(C_l)*C_l.size # multiply by size to get rid of the normalization in ifft
A_out[i,:]=np.real(A_k[::2])*pf[i]*self.k**(-p[i]-2)
# note that you have to take every other element
# in A_k, due to the extended array created from the
# discrete convolution
P_out=irfft(c_m[self.m>=0])*self.k**nu*float(self.N)
if (self.n_pad is not None):
# get rid of the elements created from padding
P_out=P_out[self.id_pad]
A_out=A_out[:,self.id_pad]
return P_out, A_out
def J_k_tensor(self,P,X,P_window=None,C_window=None):
pf, p, nu1, nu2, g_m, g_n, h_l=X
if(self.low_extrap is not None):
P=self.EK.extrap_P_low(P)
if(self.high_extrap is not None):
P=self.EK.extrap_P_high(P)
A_out=np.zeros((pf.size,self.k_size))
P_fin=np.zeros(self.k_size)
for i in range(pf.size):
P_b1=P*self.k_old**(-nu1[i])
P_b2=P*self.k_old**(-nu2[i])
if (P_window != None):
# window the input power spectrum, so that at high and low k
# the signal smoothly tapers to zero. This makes the input
# more like a periodic signal
if (self.verbose):
print('windowing biased power spectrum')
W=p_window(self.k_old,P_window[0],P_window[1])
P_b1=P_b1*W
P_b2=P_b2*W
if (self.n_pad !=0):
P_b1=np.pad(P_b1, pad_width=(self.n_pad,self.n_pad), mode='constant', constant_values=0)
P_b2=np.pad(P_b2, pad_width=(self.n_pad,self.n_pad), mode='constant', constant_values=0)
c_m_positive=rfft(P_b1)
c_n_positive=rfft(P_b2)
c_m_negative=np.conjugate(c_m_positive[1:])
c_n_negative=np.conjugate(c_n_positive[1:])
c_m=np.hstack((c_m_negative[::-1], c_m_positive))/float(self.N)
c_n=np.hstack((c_n_negative[::-1], c_n_positive))/float(self.N)
if (C_window != None):
# window the Fourier coefficients.
# This will damping the highest frequencies
if (self.verbose):
print('windowing the Fourier coefficients')
c_m=c_m*c_window(self.m,int(C_window*self.N/2.))
c_n=c_n*c_window(self.m,int(C_window*self.N/2.))
# convolve f_c and g_c
C_l=fftconvolve(c_m*g_m[i,:],c_n*g_n[i,:])
#C_l=convolve(c_m*self.g_m[i,:],c_m*self.g_n[i,:])
# multiply all l terms together
#C_l=C_l*self.h_l[i,:]*self.two_part_l[i]
C_l=C_l*h_l[i,:]
# set up to feed ifft an array ordered with l=0,1,...,-1,...,N/2-1
c_plus=C_l[self.l>=0]
c_minus=C_l[self.l< 0]
C_l=np.hstack((c_plus[:-1],c_minus))
A_k=ifft(C_l)*C_l.size # multiply by size to get rid of the normalization in ifft
A_out[i,:]=np.real(A_k[::2])*pf[i]*self.k**(p[i])
# note that you have to take every other element
# in A_k, due to the extended array created from the
# discrete convolution
P_fin += A_out[i,:]
# P_out=irfft(c_m[self.m>=0])*self.k**self.nu*float(self.N)
if (self.n_pad !=0):
# get rid of the elements created from padding
# P_out=P_out[self.id_pad]
A_out=A_out[:,self.id_pad]
P_fin=P_fin[self.id_pad]
return P_fin, A_out
### Example script ###
if __name__ == "__main__":
# An example script to run FASTPT
# Initializes and calculates all quantities supported by FASTPT
# Makes a plot for P_22 + P_13
from time import time
#Version check
print('This is FAST-PT version', __version__)
# load the data file
d=np.loadtxt('Pk_test.dat')
# declare k and the power spectrum
k=d[:,0]; P=d[:,1]
# set the parameters for the power spectrum window and
# Fourier coefficient window
#P_window=np.array([.2,.2])
C_window=.75
#document this better in the user manual
# padding length
n_pad=int(0.5*len(k))
to_do=['all']
# initialize the FASTPT class
# including extrapolation to higher and lower k
# time the operation
t1=time()
fastpt=FASTPT(k,to_do=to_do,low_extrap=-5,high_extrap=3,n_pad=n_pad)
t2=time()
# calculate 1loop SPT (and time the operation)
P_spt=fastpt.one_loop_dd(P,C_window=C_window)
t3=time()
print('initialization time for', to_do, "%10.3f" %(t2-t1), 's')
print('one_loop_dd recurring time', "%10.3f" %(t3-t2), 's')
#calculate tidal torque EE and BB P(k)
P_IA_tt=fastpt.IA_tt(P,C_window=C_window)
P_IA_ta=fastpt.IA_ta(P,C_window=C_window)
P_IA_mix=fastpt.IA_mix(P,C_window=C_window)
P_RSD=fastpt.RSD_components(P,1.0,C_window=C_window)
P_kPol=fastpt.kPol(P,C_window=C_window)
P_OV=fastpt.OV(P,C_window=C_window)
sig4=fastpt.sig4(P,C_window=C_window)
# make a plot of 1loop SPT results
import matplotlib.pyplot as plt
ax=plt.subplot(111)
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_ylabel(r'$P(k)$', size=30)
ax.set_xlabel(r'$k$', size=30)
ax.plot(k,P,label='linear')
ax.plot(k,P_spt[0], label=r'$P_{22}(k) + P_{13}(k)$' )
plt.legend(loc=3)
plt.grid()
plt.show()