forked from JoeMcEwen/FAST-PT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkpol_paper_final.py
176 lines (143 loc) · 4.88 KB
/
kpol_paper_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from __future__ import division
import numpy as np
from matter_power_spt import one_loop
import FASTPT
from time import time
# load the input power spectrum data
d=np.genfromtxt('inputs/P_OV_KPol.dat',skip_header=1)
k=d[:,0]
P=d[:,1]
# d_extend=np.loadtxt('PT_Plininterp4_z0.dat')
d_extend=np.genfromtxt('inputs/P_lin.dat',skip_header=1)
k=d_extend[:-1,0]
P=d_extend[:-1,1]
# use if you want to interpolate data
#from scipy.interpolate import interp1d
#power=interp1d(k,P)
#k=np.logspace(np.log10(k[0]),np.log10(k[-1]),3000)
#P=power(k)
#print d[:,0]-k
P_window=np.array([.2,.2])
C_window=.65
n_pad=1000
# initialize the FASTPT class
fastpt=FASTPT.FASTPT(k,to_do=['kPol'],low_extrap=-6,high_extrap=4,n_pad=n_pad)
t1=time()
p1,p2,p3=fastpt.kPol(P,C_window=C_window)
t2=time()
k=k[98:599]
p1,p2,p3=p1[98:599],p2[98:599],p3[98:599]
print('To make a one-loop power spectrum for ', k.size, ' grid points, using FAST-PT takes ', t2-t1, 'seconds.')
from matplotlib.ticker import ScalarFormatter, FormatStrFormatter
#import matplotlib as mpl
#mpl.use('Agg')
import matplotlib.pyplot as plt
from matplotlib import rc
rc('font',**{'family':'serif','serif':['Times','Palatino']})
rc('text', usetex=True)
fig=plt.figure(figsize=(16,10))
x1=10**(-2.5)
x2=10
ax1=fig.add_subplot(231)
ax1.set_ylim(1e-8,1e8)
ax1.set_xlim(x1,x2)
ax1.set_xscale('log')
ax1.set_yscale('log')
ax1.set_ylabel('$P^{(m)}(k)$ [Mpc/$h$]$^7$', size=25)
ax1.tick_params(axis='both', which='major', labelsize=25)
ax1.tick_params(axis='both', width=2, length=10)
ax1.tick_params(axis='both', which='minor', width=1, length=5)
ax1.xaxis.set_major_formatter(FormatStrFormatter('%2.2f'))
ax1.xaxis.labelpad = 20
ax1.set_xticklabels([])
ax1.plot(k,p1, lw=4, color='black', label=r'$P^{(0)}(k)$')
plt.legend(loc=3,fontsize=25)
plt.grid()
y1=-0.00007
y2=-y1
ax2=fig.add_subplot(234)
ax2.set_xscale('log')
ax2.set_xlabel(r'$k$ [$h$/Mpc]', size=25)
ax2.set_ylim(y1,y2)
ax2.set_xlim(x1,x2)
# labels = [item.get_text() for item in ax2.get_yticklabels()]
# # labels[0] = r'$-8\times 10^{-5}$'
# labels[1] = r'$-6\times 10^{-5}$'
# labels[2] = r'$-4\times 10^{-5}$'
# labels[3] = r'$-2\times 10^{-5}$'
# labels[4] = '0'
# labels[5] = r'$2\times 10^{-5}$'
# labels[6] = r'$4\times 10^{-5}$'
# labels[7] = r'$6\times 10^{-5}$'
# # labels[8] = r'$8\times 10^{-5}$'
# ax2.set_yticklabels(labels)
ax2.tick_params(axis='both', which='major', labelsize=25)
ax2.tick_params(axis='both', width=2, length=10)
ax2.tick_params(axis='both', which='minor', width=1, length=5)
ax2.xaxis.set_major_formatter(FormatStrFormatter('%2.2f'))
ax2.xaxis.labelpad = 20
ax2.plot(k,p1/d[:,5]-1,lw=2, color='black')
ax2.text(0.07, 0.07, 'fractional difference',transform=ax2.transAxes,verticalalignment='bottom', horizontalalignment='left', fontsize=25, bbox=dict(facecolor='white', edgecolor='black', pad=8.0))
# plt.legend(loc=3,fontsize=20)
plt.grid()
ax3=fig.add_subplot(232)
ax3.set_ylim(1e-8,1e8)
ax3.set_xlim(x1,x2)
ax3.set_xscale('log')
ax3.set_yscale('log')
ax3.tick_params(axis='both', which='major', labelsize=25)
ax3.tick_params(axis='both', width=2, length=10)
ax3.tick_params(axis='both', which='minor', width=1, length=5)
ax3.xaxis.set_major_formatter(FormatStrFormatter('%2.2f'))
ax3.xaxis.labelpad = 20
ax3.set_xticklabels([])
ax3.set_yticklabels([])
ax3.plot(k,p2, lw=4, color='black', label=r'$P^{(\pm 1)}(k)$')
# plt.legend(loc=3,fontsize=25)
plt.grid()
ax4=fig.add_subplot(235)
ax4.set_xscale('log')
ax4.set_xlabel(r'$k$ [$h$/Mpc]', size=25)
ax4.set_ylim(y1,y2)
ax4.set_xlim(x1,x2)
ax4.tick_params(axis='both', which='major', labelsize=25)
ax4.tick_params(axis='both', width=2, length=10)
ax4.tick_params(axis='both', which='minor', width=1, length=5)
ax4.xaxis.set_major_formatter(FormatStrFormatter('%2.2f'))
ax4.xaxis.labelpad = 20
ax4.set_yticklabels([])
ax4.plot(k,p2/d[:,7]-1,lw=2, color='black')
# plt.legend(loc=3,fontsize=20)
plt.grid()
ax5=fig.add_subplot(233)
ax5.set_ylim(1e-8,1e8)
ax5.set_xlim(x1,x2)
ax5.set_xscale('log')
ax5.set_yscale('log')
ax5.tick_params(axis='both', which='major', labelsize=25)
ax5.tick_params(axis='both', width=2, length=10)
ax5.tick_params(axis='both', which='minor', width=1, length=5)
ax5.xaxis.set_major_formatter(FormatStrFormatter('%2.2f'))
ax5.xaxis.labelpad = 20
ax5.set_xticklabels([])
ax5.set_yticklabels([])
ax5.plot(k,p3, lw=4, color='black', label=r'$P^{(\pm 2)}(k)$')
# plt.legend(loc=3,fontsize=25)
plt.grid()
ax6=fig.add_subplot(236)
ax6.set_xscale('log')
ax6.set_xlabel(r'$k$ [$h$/Mpc]', size=25)
ax6.set_ylim(y1,y2)
ax6.set_xlim(x1,x2)
ax6.tick_params(axis='both', which='major', labelsize=25)
ax6.tick_params(axis='both', width=2, length=10)
ax6.tick_params(axis='both', which='minor', width=1, length=5)
ax6.xaxis.set_major_formatter(FormatStrFormatter('%2.2f'))
ax6.xaxis.labelpad = 20
ax6.set_yticklabels([])
ax6.plot(k,p3/d[:,9]-1,lw=2, color='black')
# plt.legend(loc=3,fontsize=20)
plt.grid()
plt.tight_layout()
plt.show()
fig.savefig('kpol_plot.pdf')