-
Notifications
You must be signed in to change notification settings - Fork 131
/
Copy pathtrain.py
executable file
·133 lines (118 loc) · 4.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import json
import os
import numpy as np
import misc.utils as utils
import opts
import torch
import torch.optim as optim
from torch.nn.utils import clip_grad_value_
from dataloader import VideoDataset
from misc.rewards import get_self_critical_reward, init_cider_scorer
from models import DecoderRNN, EncoderRNN, S2VTAttModel, S2VTModel
from torch import nn
from torch.utils.data import DataLoader
def train(loader, model, crit, optimizer, lr_scheduler, opt, rl_crit=None):
model.train()
#model = nn.DataParallel(model)
for epoch in range(opt["epochs"]):
lr_scheduler.step()
iteration = 0
# If start self crit training
if opt["self_crit_after"] != -1 and epoch >= opt["self_crit_after"]:
sc_flag = True
init_cider_scorer(opt["cached_tokens"])
else:
sc_flag = False
for data in loader:
torch.cuda.synchronize()
fc_feats = data['fc_feats'].cuda()
labels = data['labels'].cuda()
masks = data['masks'].cuda()
optimizer.zero_grad()
if not sc_flag:
seq_probs, _ = model(fc_feats, labels, 'train')
loss = crit(seq_probs, labels[:, 1:], masks[:, 1:])
else:
seq_probs, seq_preds = model(
fc_feats, mode='inference', opt=opt)
reward = get_self_critical_reward(model, fc_feats, data,
seq_preds)
print(reward.shape)
loss = rl_crit(seq_probs, seq_preds,
torch.from_numpy(reward).float().cuda())
loss.backward()
clip_grad_value_(model.parameters(), opt['grad_clip'])
optimizer.step()
train_loss = loss.item()
torch.cuda.synchronize()
iteration += 1
if not sc_flag:
print("iter %d (epoch %d), train_loss = %.6f" %
(iteration, epoch, train_loss))
else:
print("iter %d (epoch %d), avg_reward = %.6f" %
(iteration, epoch, np.mean(reward[:, 0])))
if epoch % opt["save_checkpoint_every"] == 0:
model_path = os.path.join(opt["checkpoint_path"],
'model_%d.pth' % (epoch))
model_info_path = os.path.join(opt["checkpoint_path"],
'model_score.txt')
torch.save(model.state_dict(), model_path)
print("model saved to %s" % (model_path))
with open(model_info_path, 'a') as f:
f.write("model_%d, loss: %.6f\n" % (epoch, train_loss))
def main(opt):
dataset = VideoDataset(opt, 'train')
dataloader = DataLoader(dataset, batch_size=opt["batch_size"], shuffle=True)
opt["vocab_size"] = dataset.get_vocab_size()
if opt["model"] == 'S2VTModel':
model = S2VTModel(
opt["vocab_size"],
opt["max_len"],
opt["dim_hidden"],
opt["dim_word"],
opt['dim_vid'],
rnn_cell=opt['rnn_type'],
n_layers=opt['num_layers'],
rnn_dropout_p=opt["rnn_dropout_p"])
elif opt["model"] == "S2VTAttModel":
encoder = EncoderRNN(
opt["dim_vid"],
opt["dim_hidden"],
bidirectional=opt["bidirectional"],
input_dropout_p=opt["input_dropout_p"],
rnn_cell=opt['rnn_type'],
rnn_dropout_p=opt["rnn_dropout_p"])
decoder = DecoderRNN(
opt["vocab_size"],
opt["max_len"],
opt["dim_hidden"],
opt["dim_word"],
input_dropout_p=opt["input_dropout_p"],
rnn_cell=opt['rnn_type'],
rnn_dropout_p=opt["rnn_dropout_p"],
bidirectional=opt["bidirectional"])
model = S2VTAttModel(encoder, decoder)
model = model.cuda()
crit = utils.LanguageModelCriterion()
rl_crit = utils.RewardCriterion()
optimizer = optim.Adam(
model.parameters(),
lr=opt["learning_rate"],
weight_decay=opt["weight_decay"])
exp_lr_scheduler = optim.lr_scheduler.StepLR(
optimizer,
step_size=opt["learning_rate_decay_every"],
gamma=opt["learning_rate_decay_rate"])
train(dataloader, model, crit, optimizer, exp_lr_scheduler, opt, rl_crit)
if __name__ == '__main__':
opt = opts.parse_opt()
opt = vars(opt)
os.environ['CUDA_VISIBLE_DEVICES'] = opt["gpu"]
opt_json = os.path.join(opt["checkpoint_path"], 'opt_info.json')
if not os.path.isdir(opt["checkpoint_path"]):
os.mkdir(opt["checkpoint_path"])
with open(opt_json, 'w') as f:
json.dump(opt, f)
print('save opt details to %s' % (opt_json))
main(opt)