-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrunner.py
874 lines (643 loc) · 35 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
import os
import re
import copy
import math
import time
import glob
import shutil
from abc import *
from tqdm import tqdm
from collections import OrderedDict, defaultdict
import torch
from torch.nn.utils.rnn import pad_sequence
from transformers import AdamW, get_linear_schedule_with_warmup, get_constant_schedule
from transformers.modeling_outputs import BaseModelOutput
from transformers import T5ForConditionalGeneration
from tensorboardX import SummaryWriter
from reader import MultiWOZIterator, MultiWOZReader
from evaluator import MultiWozEvaluator
from utils import definitions
from utils.utils import get_or_create_logger, load_json, save_json, split_user_act_and_resp
logger = get_or_create_logger(__name__)
class Reporter(object):
def __init__(self, log_frequency, model_dir):
self.log_frequency = log_frequency
self.summary_writer = SummaryWriter(os.path.join(model_dir, "tensorboard"))
self.global_step = 0
self.lr = 0
self.init_stats()
def init_stats(self):
self.step_time = 0.0
self.belief_loss = 0.0
self.resp_loss = 0.0
self.belief_correct = 0.0
self.resp_correct = 0.0
self.belief_count = 0.0
self.resp_count = 0.0
def step(self, start_time, lr, step_outputs, force_info=False, is_train=True):
self.global_step += 1
self.step_time += (time.time() - start_time)
self.resp_loss += step_outputs["resp"]["loss"]
self.resp_correct += step_outputs["resp"]["correct"]
self.resp_count += step_outputs["resp"]["count"]
if 'belief' in step_outputs:
self.belief_loss += step_outputs["belief"]["loss"]
self.belief_correct += step_outputs["belief"]["correct"]
self.belief_count += step_outputs["belief"]["count"]
do_belief_stats = True
else:
do_belief_stats = False
if is_train:
self.lr = lr
self.summary_writer.add_scalar("lr", lr, global_step=self.global_step)
if self.global_step % self.log_frequency == 0:
self.info_stats("train", self.global_step, do_belief_stats)
def info_stats(self, data_type, global_step, do_belief_stats=False):
avg_step_time = self.step_time / self.log_frequency
resp_ppl = math.exp(self.resp_loss / self.resp_count)
resp_acc = (self.resp_correct / self.resp_count) * 100
self.summary_writer.add_scalar(
"{}/resp_loss".format(data_type), self.resp_loss, global_step=global_step)
self.summary_writer.add_scalar(
"{}/resp_ppl".format(data_type), resp_ppl, global_step=global_step)
self.summary_writer.add_scalar(
"{}/resp_acc".format(data_type), resp_acc, global_step=global_step)
if data_type == "train":
common_info = "step {0:d}; step-time {1:.2f}s; lr {2:.2e};".format(
global_step, avg_step_time, self.lr)
else:
common_info = "[Validation]"
resp_info = "[resp] loss {0:.2f}; ppl {1:.2f}; acc {2:.2f}".format(
self.resp_loss, resp_ppl, resp_acc)
if do_belief_stats:
belief_ppl = math.exp(self.belief_loss / self.belief_count)
belief_acc = (self.belief_correct / self.belief_count) * 100
self.summary_writer.add_scalar(
"{}/belief_loss".format(data_type), self.belief_loss, global_step=global_step)
self.summary_writer.add_scalar(
"{}/belief_ppl".format(data_type), belief_ppl, global_step=global_step)
self.summary_writer.add_scalar(
"{}/belief_acc".format(data_type), belief_acc, global_step=global_step)
belief_info = "[belief] loss {0:.2f}; ppl {1:.2f}; acc {2:.2f}".format(
self.belief_loss, belief_ppl, belief_acc)
else:
belief_info = ''
logger.info(
" ".join([common_info, resp_info, belief_info,]))
self.init_stats()
class BaseRunner(metaclass=ABCMeta):
def __init__(self, cfg, reader):
self.cfg = cfg
self.reader = reader
self.model = self.load_model()
def load_model(self):
if self.cfg.ckpt is not None:
model_path = self.cfg.ckpt
elif self.cfg.train_from is not None:
model_path = self.cfg.train_from
else:
model_path = self.cfg.backbone
if self.cfg.backbone in ["t5-small", "t5-base", "t5-large"]:
model = T5ForConditionalGeneration.from_pretrained(model_path)
logger.info("Load model from {}".format(model_path))
model.resize_token_embeddings(self.reader.vocab_size)
model.to(self.cfg.device)
return model
def save_model(self, epoch):
latest_ckpt = "ckpt-epoch{}".format(epoch)
save_path = os.path.join(self.cfg.model_dir, latest_ckpt)
'''
if self.cfg.num_gpus > 1:
model = self.model.module
else:
model = self.model
'''
model = self.model
model.save_pretrained(save_path)
self.reader.tokenizer.save_pretrained(save_path)
# keep chekpoint up to maximum
checkpoints = sorted(
glob.glob(os.path.join(self.cfg.model_dir, "ckpt-*")),
key=os.path.getmtime,
reverse=True)
checkpoints_to_be_deleted = checkpoints[self.cfg.max_to_keep_ckpt:]
for ckpt in checkpoints_to_be_deleted:
shutil.rmtree(ckpt)
return latest_ckpt
def get_optimizer_and_scheduler(self, num_traininig_steps_per_epoch, train_batch_size):
'''
num_train_steps = (num_train_examples *
self.cfg.epochs) // (train_batch_size * self.cfg.grad_accum_steps)
'''
num_train_steps = (num_traininig_steps_per_epoch *
self.cfg.epochs) // self.cfg.grad_accum_steps
if self.cfg.warmup_steps >= 0:
num_warmup_steps = self.cfg.warmup_steps
else:
#num_warmup_steps = int(num_train_steps * 0.2)
num_warmup_steps = int(num_train_steps * self.cfg.warmup_ratio)
logger.info("Total training steps = {}, warmup steps = {}".format(
num_train_steps, num_warmup_steps))
optimizer = AdamW(self.model.parameters(), lr=self.cfg.learning_rate)
if self.cfg.no_learning_rate_decay:
scheduler = get_constant_schedule(optimizer)
else:
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_train_steps)
return optimizer, scheduler
def count_tokens(self, pred, label, pad_id):
num_count = label.view(-1).ne(pad_id).long().sum()
num_correct = 0
for i in range(label.shape[0]):
single_pred, single_label = pred[i], label[i]
valid_len = single_label.ne(pad_id).long().sum()
single_pred = single_pred[:valid_len]
single_label = single_label[:valid_len]
num_correct += (single_pred == single_label).sum()
return num_correct, num_count
def count_spans(self, pred, label):
pred = pred.view(-1, 2)
num_count = label.ne(-1).long().sum()
num_correct = torch.eq(pred, label).long().sum()
return num_correct, num_count
@abstractmethod
def train(self):
raise NotImplementedError
@abstractmethod
def predict(self):
raise NotImplementedError
class MultiWOZRunner(BaseRunner):
def __init__(self, cfg):
reader = MultiWOZReader(cfg, cfg.version)
self.iterator = MultiWOZIterator(reader)
super(MultiWOZRunner, self).__init__(cfg, reader)
def step_fn(self, inputs, resp_labels, belief_labels=None):
inputs = inputs.to(self.cfg.device)
resp_labels = resp_labels.to(self.cfg.device)
if self.cfg.agent_type == 'ds' and belief_labels is not None:
belief_labels = belief_labels.to(self.cfg.device)
attention_mask = torch.where(inputs == self.reader.pad_token_id, 0, 1)
encoder_outputs = None
if self.cfg.agent_type == 'ds' and belief_labels is not None:
belief_outputs = self.model(input_ids=inputs,
attention_mask=attention_mask,
labels=belief_labels)
belief_loss = belief_outputs.loss
belief_logits = belief_outputs.logits
belief_pred = torch.argmax(belief_logits, dim=-1)
encoder_last_hidden_state = belief_outputs.encoder_last_hidden_state
encoder_hidden_states = belief_outputs.encoder_hidden_states
encoder_attentions = belief_outputs.encoder_attentions
encoder_outputs = BaseModelOutput(last_hidden_state=encoder_last_hidden_state,
hidden_states=encoder_hidden_states,
attentions=encoder_attentions)
# batch_size, max_length = resp_labels.shape[0], resp_labels.shape[1]
# decoder_attention_mask = torch.ones(batch_size, max_length).to(self.cfg.device) # mask pad and db tokens
# for i in range(4):
# decoder_attention_mask[:,i] = 0
resp_outputs = self.model(attention_mask=attention_mask,
# decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
labels=resp_labels)
resp_loss = resp_outputs.loss
resp_logits = resp_outputs.logits
resp_pred = torch.argmax(resp_logits, dim=-1)
num_belief_correct, num_belief_count = self.count_tokens(belief_pred, belief_labels, pad_id=self.reader.pad_token_id)
num_resp_correct, num_resp_count = self.count_tokens(resp_pred, resp_labels, pad_id=self.reader.pad_token_id)
elif self.cfg.agent_type == 'us' and belief_labels is None:
resp_outputs = self.model(input_ids=inputs,
attention_mask=attention_mask,
labels=resp_labels)
resp_loss = resp_outputs.loss
resp_logits = resp_outputs.logits
resp_pred = torch.argmax(resp_logits, dim=-1)
num_resp_correct, num_resp_count = self.count_tokens(resp_pred, resp_labels, pad_id=self.reader.pad_token_id)
else:
raise Exception('Wrong agent type! It should be us or ds.')
loss = self.cfg.resp_loss_coeff * resp_loss
if self.cfg.agent_type == 'ds' and belief_labels is not None:
loss += self.cfg.bspn_loss_coeff * belief_loss
step_outputs = {}
step_outputs["resp"] = {"loss": resp_loss.item(),
"correct": num_resp_correct.item(),
"count": num_resp_count.item()}
if self.cfg.agent_type == 'ds':
step_outputs["belief"] = {"loss": belief_loss.item(),
"correct": num_belief_correct.item(),
"count": num_belief_count.item()}
return loss, step_outputs
def train_epoch(self, train_iterator, optimizer, scheduler, num_training_steps_per_epoch, reporter=None):
self.model.train()
self.model.zero_grad()
with tqdm(total=num_training_steps_per_epoch) as pbar:
for step, batch in enumerate(train_iterator):
start_time = time.time()
inputs, resp_labels, belief_labels = batch
loss, step_outputs = self.step_fn(inputs, resp_labels, belief_labels)
if self.cfg.grad_accum_steps > 1:
loss = loss / self.cfg.grad_accum_steps
loss.backward()
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.cfg.max_grad_norm)
if (step + 1) % self.cfg.grad_accum_steps == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
lr = scheduler.get_last_lr()[0]
if reporter is not None and self.cfg.log_frequency > 0:
reporter.step(start_time, lr, step_outputs)
pbar.update(1)
def train(self):
train_batches, num_training_steps_per_epoch, _, _ = self.iterator.get_batches(
"train", self.cfg.batch_size, self.cfg.num_gpus, shuffle=True,
num_dialogs=self.cfg.num_train_dialogs, excluded_domains=self.cfg.excluded_domains)
optimizer, scheduler = self.get_optimizer_and_scheduler(
num_training_steps_per_epoch, self.cfg.batch_size)
reporter = Reporter(self.cfg.log_frequency, self.cfg.model_dir)
for epoch in range(1, self.cfg.epochs + 1):
get_iterator_fn = self.iterator.get_data_iterator(self.cfg.agent_type)
train_iterator = get_iterator_fn(train_batches, self.cfg.ururu, self.cfg.context_size)
self.train_epoch(train_iterator, optimizer, scheduler, num_training_steps_per_epoch, reporter)
logger.info("done {}/{} epoch".format(epoch, self.cfg.epochs))
self.save_model(epoch)
if not self.cfg.no_validation:
self.validation(reporter.global_step)
def validation(self, global_step):
self.model.eval()
dev_batches, num_steps, _, _ = self.iterator.get_batches(
"dev", self.cfg.batch_size, self.cfg.num_gpus)
get_iterator_fn = self.iterator.get_data_iterator(self.cfg.agent_type)
dev_iterator = get_iterator_fn(
dev_batches, self.cfg.ururu, self.cfg.context_size)
reporter = Reporter(1000000, self.cfg.model_dir)
torch.set_grad_enabled(False)
for batch in tqdm(dev_iterator, total=num_steps, desc="Validaction"):
start_time = time.time()
inputs, resp_labels, belief_labels = batch
_, step_outputs = self.step_fn(inputs, resp_labels, belief_labels)
reporter.step(start_time, lr=None, step_outputs=step_outputs, is_train=False)
do_belief_stats = True if 'belief' in step_outputs else False
reporter.info_stats("dev", global_step, do_belief_stats)
torch.set_grad_enabled(True)
def finalize_bspn(self, belief_outputs, domain_history, constraint_history, span_outputs=None, input_ids=None):
eos_token_id = self.reader.get_token_id(definitions.EOS_BELIEF_TOKEN)
batch_decoded = []
for i, belief_output in enumerate(belief_outputs):
if belief_output[0] == self.reader.pad_token_id:
belief_output = belief_output[1:]
if eos_token_id not in belief_output:
eos_idx = len(belief_output) - 1
else:
eos_idx = belief_output.index(eos_token_id)
bspn = belief_output[:eos_idx + 1]
decoded = {}
decoded["bspn_gen"] = bspn
# update bspn using span output
if span_outputs is not None and input_ids is not None:
span_output = span_outputs[i]
input_id = input_ids[i]
#print(self.reader.tokenizer.decode(input_id))
#print(self.reader.tokenizer.decode(bspn))
eos_idx = input_id.index(self.reader.eos_token_id)
input_id = input_id[:eos_idx]
span_result = {}
bos_user_id = self.reader.get_token_id(definitions.BOS_USER_TOKEN)
span_output = span_output[:eos_idx]
b_slot = None
for t, span_token_idx in enumerate(span_output):
turn_id = max(input_id[:t].count(bos_user_id) - 1, 0)
turn_domain = domain_history[i][turn_id]
if turn_domain not in definitions.INFORMABLE_SLOTS:
continue
span_token = self.reader.span_tokens[span_token_idx]
if span_token not in definitions.INFORMABLE_SLOTS[turn_domain]:
b_slot = span_token
continue
if turn_domain not in span_result:
span_result[turn_domain] = defaultdict(list)
if b_slot != span_token:
span_result[turn_domain][span_token] = [input_id[t]]
else:
span_result[turn_domain][span_token].append(input_id[t])
b_slot = span_token
for domain, sv_dict in span_result.items():
for s, v_list in sv_dict.items():
value = v_list[-1]
span_result[domain][s] = self.reader.tokenizer.decode(
value, clean_up_tokenization_spaces=False)
span_dict = copy.deepcopy(span_result)
ontology = self.reader.db.extractive_ontology
flatten_span = []
for domain, sv_dict in span_result.items():
flatten_span.append("[" + domain + "]")
for s, v in sv_dict.items():
if domain in ontology and s in ontology[domain]:
if v not in ontology[domain][s]:
del span_dict[domain][s]
continue
if s == "destination" or s == "departure":
_s = "destination" if s == "departure" else "departure"
if _s in sv_dict and v == sv_dict[_s]:
if s in span_dict[domain]:
del span_dict[domain][s]
if _s in span_dict[domain]:
del span_dict[domain][_s]
continue
if s in ["time", "leave", "arrive"]:
v = v.replace(".", ":")
if re.match("[0-9]+:[0-9]+", v) is None:
del span_dict[domain][s]
continue
else:
span_dict[domain][s] = v
flatten_span.append("[value_" + s + "]")
flatten_span.append(v)
if len(span_dict[domain]) == 0:
del span_dict[domain]
flatten_span.pop()
#print(flatten_span)
#input()
decoded["span"] = flatten_span
constraint_dict = self.reader.bspn_to_constraint_dict(
self.reader.tokenizer.decode(bspn, clean_up_tokenization_spaces=False))
if self.cfg.overwrite_with_span:
_constraint_dict = OrderedDict()
for domain, slots in definitions.INFORMABLE_SLOTS.items():
if domain in constraint_dict or domain in span_dict:
_constraint_dict[domain] = OrderedDict()
for slot in slots:
if domain in constraint_dict:
cons_value = constraint_dict[domain].get(slot, None)
else:
cons_value = None
if domain in span_dict:
span_value = span_dict[domain].get(slot, None)
else:
span_value = None
if cons_value is None and span_value is None:
continue
# priority: span_value > cons_value
slot_value = span_value or cons_value
_constraint_dict[domain][slot] = slot_value
else:
_constraint_dict = copy.deepcopy(constraint_dict)
bspn_gen_with_span = self.reader.constraint_dict_to_bspn(
_constraint_dict)
bspn_gen_with_span = self.reader.encode_text(
bspn_gen_with_span,
bos_token=definitions.BOS_BELIEF_TOKEN,
eos_token=definitions.EOS_BELIEF_TOKEN)
decoded["bspn_gen_with_span"] = bspn_gen_with_span
batch_decoded.append(decoded)
return batch_decoded
def finalize_resp(self, resp_outputs):
bos_action_token_id = self.reader.get_token_id(definitions.BOS_ACTION_TOKEN)
eos_action_token_id = self.reader.get_token_id(definitions.EOS_ACTION_TOKEN)
bos_resp_token_id = self.reader.get_token_id(definitions.BOS_RESP_TOKEN)
eos_resp_token_id = self.reader.get_token_id(definitions.EOS_RESP_TOKEN)
batch_decoded = []
for resp_output in resp_outputs:
resp_output = resp_output[1:]
if self.reader.eos_token_id in resp_output:
eos_idx = resp_output.index(self.reader.eos_token_id)
resp_output = resp_output[:eos_idx]
try:
bos_action_idx = resp_output.index(bos_action_token_id)
eos_action_idx = resp_output.index(eos_action_token_id)
except ValueError:
# logger.warn("bos/eos action token not in : {}".format(
# self.reader.tokenizer.decode(resp_output)))
aspn = [bos_action_token_id, eos_action_token_id]
else:
aspn = resp_output[bos_action_idx:eos_action_idx + 1]
try:
bos_resp_idx = resp_output.index(bos_resp_token_id)
eos_resp_idx = resp_output.index(eos_resp_token_id)
except ValueError:
# logger.warn("bos/eos resp token not in : {}".format(
# self.reader.tokenizer.decode(resp_output)))
resp = [bos_resp_token_id, eos_resp_token_id]
else:
resp = resp_output[bos_resp_idx:eos_resp_idx + 1]
decoded = {"aspn_gen": aspn, "resp_gen": resp}
batch_decoded.append(decoded)
return batch_decoded
def predict(self):
self.model.eval()
pred_batches, _, _, _ = self.iterator.get_batches(
self.cfg.pred_data_type, self.cfg.batch_size,
self.cfg.num_gpus, excluded_domains=self.cfg.excluded_domains)
eval_dial_list = None
if self.cfg.excluded_domains is not None:
eval_dial_list = []
for domains, dial_ids in self.iterator.dial_by_domain.items():
domain_list = domains.split("-")
if len(set(domain_list) & set(self.cfg.excluded_domains)) == 0:
eval_dial_list.extend(dial_ids)
results = {}
for dial_batch in tqdm(pred_batches, total=len(pred_batches), desc="Prediction"):
batch_size = len(dial_batch)
dial_history = [[] for _ in range(batch_size)]
domain_history = [[] for _ in range(batch_size)]
constraint_dicts = [OrderedDict() for _ in range(batch_size)]
for turn_batch in self.iterator.transpose_batch(dial_batch):
batch_encoder_input_ids = []
for t, turn in enumerate(turn_batch):
context = self.iterator.flatten_dial_history(
dial_history[t], len(turn["user"]), self.cfg.context_size)
encoder_input_ids = context + turn["user"] + [self.reader.eos_token_id]
batch_encoder_input_ids.append(self.iterator.tensorize(encoder_input_ids))
turn_domain = turn["turn_domain"][-1]
if "[" in turn_domain:
turn_domain = turn_domain[1:-1]
domain_history[t].append(turn_domain)
batch_encoder_input_ids = pad_sequence(batch_encoder_input_ids,
batch_first=True,
padding_value=self.reader.pad_token_id)
batch_encoder_input_ids = batch_encoder_input_ids.to(self.cfg.device)
attention_mask = torch.where(
batch_encoder_input_ids == self.reader.pad_token_id, 0, 1)
bspn_decoder_input_ids = self.iterator.tensorize([[self.reader.pad_token_id] + [self.reader.tokenizer.convert_tokens_to_ids(definitions.BOS_BELIEF_TOKEN)] for _ in range(batch_encoder_input_ids.shape[0])])
bspn_decoder_input_ids = bspn_decoder_input_ids.to(self.cfg.device)
# belief tracking
with torch.no_grad():
belief_outputs = self.model.generate(input_ids=batch_encoder_input_ids,
attention_mask=attention_mask,
decoder_input_ids=bspn_decoder_input_ids,
eos_token_id=self.reader.eos_token_id,
max_length=200)
belief_outputs = belief_outputs.cpu().numpy().tolist()
decoded_belief_outputs = self.finalize_bspn(
belief_outputs, domain_history, constraint_dicts)
for t, turn in enumerate(turn_batch):
turn.update(**decoded_belief_outputs[t])
if self.cfg.task == "e2e":
dbpn = []
if self.cfg.use_true_dbpn:
for turn in turn_batch:
dbpn.append(turn["dbpn"])
else:
for turn in turn_batch:
if self.cfg.add_auxiliary_task:
bspn_gen = turn["bspn_gen_with_span"]
else:
bspn_gen = turn["bspn_gen"]
bspn_gen = self.reader.tokenizer.decode(
bspn_gen, clean_up_tokenization_spaces=False)
db_token = self.reader.bspn_to_db_pointer(bspn_gen,
turn["turn_domain"])
dbpn_gen = self.reader.encode_text(
db_token,
bos_token=definitions.BOS_DB_TOKEN,
eos_token=definitions.EOS_DB_TOKEN)
turn["dbpn_gen"] = dbpn_gen
dbpn.append(dbpn_gen)
for t, db in enumerate(dbpn):
if self.cfg.use_true_curr_aspn:
db += turn_batch[t]["aspn"]
# T5 use pad_token as start_decoder_token_id
dbpn[t] = [self.reader.pad_token_id] + db
# aspn has different length
if self.cfg.use_true_curr_aspn:
for t, _dbpn in enumerate(dbpn):
resp_decoder_input_ids = self.iterator.tensorize([_dbpn])
resp_decoder_input_ids = resp_decoder_input_ids.to(self.cfg.device)
with torch.no_grad():
resp_outputs = self.model.generate(
# encoder_outputs=encoder_outputs,
attention_mask=attention_mask[t].unsqueeze(0),
decoder_input_ids=resp_decoder_input_ids,
eos_token_id=self.reader.eos_token_id,
max_length=300,)
resp_outputs = resp_outputs.cpu().numpy().tolist()
decoded_resp_outputs = self.finalize_resp(resp_outputs)
turn_batch[t].update(**decoded_resp_outputs[0])
else:
resp_decoder_input_ids = self.iterator.tensorize(dbpn)
resp_decoder_input_ids = resp_decoder_input_ids.to(self.cfg.device)
# response generation
with torch.no_grad():
resp_outputs = self.model.generate(
input_ids=batch_encoder_input_ids,
# encoder_outputs=encoder_outputs,
attention_mask=attention_mask,
decoder_input_ids=resp_decoder_input_ids,
eos_token_id=self.reader.eos_token_id,
max_length=300)
resp_outputs = resp_outputs.cpu().numpy().tolist()
decoded_resp_outputs = self.finalize_resp(resp_outputs)
for t, turn in enumerate(turn_batch):
turn.update(**decoded_resp_outputs[t])
# update dial_history
for t, turn in enumerate(turn_batch):
pv_text = copy.copy(turn["user"])
if self.cfg.use_true_prev_bspn:
pv_bspn = turn["bspn"]
else:
if self.cfg.add_auxiliary_task:
pv_bspn = turn["bspn_gen_with_span"]
else:
pv_bspn = turn["bspn_gen"]
if self.cfg.use_true_dbpn:
pv_dbpn = turn["dbpn"]
else:
pv_dbpn = turn["dbpn_gen"]
if self.cfg.use_true_prev_aspn:
pv_aspn = turn["aspn"]
else:
pv_aspn = turn["aspn_gen"]
# if self.cfg.use_true_prev_resp:
# if self.cfg.task == "e2e":
# pv_resp = turn["redx"]
# else:
# pv_resp = turn["resp"]
# else:
# pv_resp = turn["resp_gen"]
if self.cfg.use_true_prev_resp:
pv_resp = turn["redx"]
else:
pv_resp = turn["resp_gen"]
if self.cfg.ururu:
pv_text += pv_resp
else:
pv_text += (pv_bspn + pv_dbpn + pv_aspn + pv_resp)
dial_history[t].append(pv_text)
result = self.iterator.get_readable_batch(dial_batch)
results.update(**result)
# if self.cfg.output:
# save_json(results, os.path.join(self.cfg.ckpt, self.cfg.output))
evaluator = MultiWozEvaluator(self.reader, self.cfg.pred_data_type)
if self.cfg.task == "e2e":
bleu, success, match = evaluator.e2e_eval(
results, eval_dial_list=eval_dial_list, add_auxiliary_task=self.cfg.add_auxiliary_task)
score = 0.5 * (success + match) + bleu
logger.info('match: %2.2f; success: %2.2f; bleu: %2.2f; score: %.2f' % (
match, success, bleu, score))
if self.cfg.output:
save_json(results, os.path.join(self.cfg.ckpt, self.cfg.output))
else:
joint_goal, f1, accuracy, count_dict, correct_dict = evaluator.dialog_state_tracking_eval(
results, add_auxiliary_task=self.cfg.add_auxiliary_task)
logger.info('joint acc: %2.2f; acc: %2.2f; f1: %2.2f;' % (
joint_goal, accuracy, f1))
for domain_slot, count in count_dict.items():
correct = correct_dict.get(domain_slot, 0)
acc = (correct / count) * 100
logger.info('{0} acc: {1:.2f}'.format(domain_slot, acc))
def us_predict(self):
self.model.eval()
pred_batches, _, _, _ = self.iterator.get_batches(
self.cfg.pred_data_type, self.cfg.batch_size,
self.cfg.num_gpus, excluded_domains=self.cfg.excluded_domains)
eval_dial_list = None
if self.cfg.excluded_domains is not None:
eval_dial_list = []
for domains, dial_ids in self.iterator.dial_by_domain.items():
domain_list = domains.split("-")
if len(set(domain_list) & set(self.cfg.excluded_domains)) == 0:
eval_dial_list.extend(dial_ids)
results = {}
for dial_batch in tqdm(pred_batches, total=len(pred_batches), desc="Prediction"):
batch_size = len(dial_batch)
dial_history = [[] for _ in range(batch_size)]
for turn_batch in self.iterator.transpose_batch(dial_batch):
batch_encoder_input_ids = []
for t, turn in enumerate(turn_batch):
context = self.iterator.flatten_dial_history(
dial_history[t], len(turn['goal_state']), self.cfg.context_size
)
encoder_input_ids = context + turn['goal_state'] + [self.reader.eos_token_id]
batch_encoder_input_ids.append(self.iterator.tensorize(encoder_input_ids))
batch_encoder_input_ids = pad_sequence(batch_encoder_input_ids,
batch_first=True,
padding_value=self.reader.pad_token_id)
batch_encoder_input_ids = batch_encoder_input_ids.to(self.cfg.device)
attention_mask = torch.where(batch_encoder_input_ids == self.reader.pad_token_id, 0, 1)
with torch.no_grad():
model_outputs = self.model.generate(
input_ids=batch_encoder_input_ids,
attention_mask=attention_mask,
eos_token_id=self.reader.eos_token_id,
max_length=200
)
model_outputs = model_outputs.cpu().numpy().tolist()
for t, turn in enumerate(turn_batch):
user_act, user_utterance, _, _ = split_user_act_and_resp(self.reader.tokenizer, model_outputs[t])
user_act = self.reader.tokenizer.decode(user_act, clean_up_tokenization_spaces=False).split()
user_utterance = self.reader.tokenizer.decode(user_utterance, clean_up_tokenization_spaces=False).split()
user_act = ' '.join(user_act[1:-1])
user_utterance = ' '.join(user_utterance[1:-1])
turn['user_gen'] = user_utterance
turn['user_act_gen'] = user_act
pv_text = copy.copy(turn['user'])
pv_text = pv_text + turn['redx']
dial_history[t].append(pv_text)
result = self.iterator.get_readable_batch(dial_batch)
results.update(**result)
if self.cfg.output:
save_json(results, os.path.join(self.cfg.ckpt, self.cfg.output))
evaluator = MultiWozEvaluator(self.reader, self.cfg.pred_data_type)
bleu = evaluator.e2e_eval(results, eval_for_us=True)
logger.info('bleu: {:2.2f}'.format(bleu))